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ABSTRACT

Photo-cured dental composites are widely used in dental practices to restore teeth due to the esthetic appearance
of the composites and the ability to cure in situ. However, their complex optical characteristics make it difficult to
understand the light transport within the composites and to predict the depth of cure. Our previous work showed
that the absorption and scattering coefficients of the composite changed after the composite was cured. The
static Monte Carlo simulation showed that the penetration of radiant exposures differed significantly for cured
and uncured optical properties. This means that a dynamic model is required for accurate prediction of radiant
exposure in the composites. The purpose of this study was to develop and verify a dynamic Monte Carlo (DMC)
model simulating light propagation in dental composites that have dynamic optical properties while photons are
absorbed. The composite was divided into many small cubes, each of which had its own scattering and absorption
coefficients. As light passed through the composite, the light was scattered and absorbed. The amount of light
absorbed in each cube was calculated using Beer’s Law and was used to determine the next optical properties
in that cube. Finally, the predicted total reflectance and transmittance as well as the optical property during
curing were verified numerically and experimentally. Our results showed that the model predicted values agreed
with the theoretical values within 1% difference. The DMC model results are comparable with experimental
results within 5% differences.
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1. INTRODUCTION

Photo-cured polymers have been used in a wide variety of areas, such as on UV photocurable coatings industry,1

orthopedic biomaterials,2 and dental restorations.3 The particular advantage of a photo-cured polymer used as
a biomaterial is its potential for in situ formation, which allows for the filling of irregular shaped target defects
(for example, cavities in the teeth), allows for spatial and temporal control of the polymerization, and allows
rapid polymerization under physiological conditions. A critical feature of a photo-cured polymer is the extent of
cure, which affects the mechanical or physical properties of the composite restorative, such as the hardness, the
fracture toughness, or the shrinkage.

Photoinitiators are designed to absorb light and produce radicals. This absorption causes significant light
attenuation (especially when polymerizing thick samples), which decreases the rate of polymerization, and causes
insufficient extent of cure at deeper depths. Previous studies4 showed that during the curing process, absorption
by the photoinitiator declines as the initiator is incorporated into the polymer through an addition process. The
refractive index of the resin matrix also changes during the polymerization,5 which in turn affects the scattering
by the filler particles, thereby changing the overall scattering coefficient of the composite. Thus, the distribution
of light within the composite changes as it cures.

The distribution of light in a multiply scattering medium depends on the scattering and absorption coefficients
as well as on the index of refraction. Previous research has shown that a simple Monte Carlo model can be used
to simulate light transport in static optical property media to understand the light distribution in the dental
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Figure 1. The trajectory of the photon in Cartesian coordinates.

composites.4 However, in reality, the optical properties of photocured dental composites change during the curing
process. A more complicated dynamic Monte Carlo model that allows for the changes in optical properties as
the photon is absorbed is needed to describe accurately the light distribution in the composite as it cures.

Several attempts have been made to develop Monte Carlo models that account for local changes in absorption
and scattering coefficients due to laser irradiation but these models were either two-dimensional6 or assumed a
spherical geometry.7 A three-dimensional modular adaptive grid numerical model by Pfefer et al. was developed
to simulate the light propagation in geometrically complex biological tissues.8 Their model allowed the optical
properties to be varied within structurally complex biological tissue by digitally mapping the structure of different
biological tissues with the fine symmetrical grids they created, but their model was not adapted for dynamic
changes of optical properties during the photon deposition.

This study developed a dynamic Monte Carlo (DMC) model for heterogeneous media whose optical properties
can vary with position and can vary dynamically as photons are absorbed. The DMC model was verified
numerically with theoretical and experimental results.

2. DYNAMIC MONTE CARLO MODEL (DMC) METHODS

2.1. Initialization

This Monte Carlo program uses Cartesian coordinates (x, y, z) to represent the location of the photons. The
dimensions of the medium and the bin size are specified explicitly. Each bin is the same size. Each of the
Cartesian locations is converted to the bin index based on the bin size. Each bin is assigned an initial set of
optical properties. The trajectory of the photon is represented by the direction cosines as (ux, uy, uz),

ux = cos(θ) cos(ϕ) ,

uy = cos(θ) sin(ϕ) ,

uz = sin(θ) ,

where θ is the polar angle from the z-axis and ϕ is the azimuthal angle in the xy-plane from the x-axis in spherical
coordinate (Fig. 1). Each direction cosine is the cosine of the angle between the current photon direction and
the respective axis.

2.2. Photon movement

A circular flat beam was launched perpendicular to the top surface. Each launched photon begins with a full
weight, one minus the specular reflection, at the surface (see section 2.3). As the photon moves, its weight
attenuates with its path length based on the Beer’s law. The step size S is chosen as the distance to the next
scattering event,

S = − ln(ξ)/µs ,
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Figure 2. A 2-D representation of photon taking steps. The photon take one step to cross one bin at a time (s1, s2, . . .,
or s6) until − ln(ξ) = s1µs1 + s2µs2 + s3µs3 + . . . + s6µs6, where ξ is a random number between 0 and 1, and µs1,2,...,6 are
the scattering coefficients of the bins.

where ξ is a non-zero random number between 0 and 1, and µs is the scattering coefficient of the bin which
currently contains the photon. However, since the optical properties may vary from bin to bin, instead of moving
the photon a distance S to the next scattering event, the photon moves one bin at a time until the accumulated
step size matches S · µs (see Fig. 2 for a 2-D representation). In other words,

− ln(ξ) = s1µs1 + s2µs2 + s3µs3 + . . . + snµsn ,

where s1, s2, . . . , sn are the step sizes within each bin, and µs1, µs2, . . . , µsn are the scattering coefficients of these
bins. Note that the photon may not be able to take a full step from one bin to another at the last step sn.
Therefore, sn is the residual step left after the n− 1 steps.

The calculation of the step size s1, ..., sn is the most significant addition of this Monte Carlo program.
To begin, the closest of the six planes along the photon trajectory must be found. An example of a photon
movement is presented in Fig. 3. According to the signs of (ux, uy, uz), we know the direction in which the
photon will go. For example, in Fig. 3, the photon is directed forward (uy > 0) to the right (ux > 0) and
upwards (uz > 0). To discover which plane of the bin that the photon hits first (e.g., plane 1, 2, or 5 in this
example), we use the trajectory in the ~x-~y plane to calculate the distance (∆v) to the edge of the bin in the
~x-~y plane and then judge which plane is hit in the trajectory ~v-~z plane. The distances to each of the remaining
planes (∆x1,∆x2,∆y1,∆y2,∆z1, and ∆z2) are used to calculate the angles, δ in ~x-~y plane (Fig. 3(b)) and α in
trajectory ~v-~z plane (Fig. 3(c)). In this example,

δ1 = tan−1(∆y1/∆x1).

The azimuthal angles, ϕ and δ1 (Fig. 3(b)), are first compared to decide the movement to plane 1 or plane 2 and
to calculate the moving distance ∆v in ~x-~y plane. If ϕ ≤ δ1, move to plane 1 and ∆v = ∆x1/ cos ϕ; otherwise,
move to plane 2 and and ∆v = ∆y1/ sinϕ.

Subsequently, the polar angles, θ and α1 (Fig. 3(c)), in the trajectory ~v-~z plane is compared to decide the
movement to plane 2 or plane 5 and to calculate the step size, s1, for the photon. In this example,

α1 = tan−1(∆z1/∆v).

If θ ≤ α1, move to plane 2 and s1 = ∆v/ cos θ; otherwise, move to plane 5 and and s1 = ∆z1/ sin θ.

After the step size of the photon is found, the photon position is updated from the old position (x, y, z) to a
new position (x′, y′, z′) as following equations,

x′ = x + s1ux ;

y′ = y + s1uy ;

z′ = z + s1uz .
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Figure 3. A schematic drawing of photon movement to the boundary plane of a bin. The azimuthal angle of the trajectory
is ϕ, and the polar angle is θ. The distances is ∆x1 to plane 1, ∆x2 to plane 3, ∆y1 to plane 2, ∆y2 to plane 4, ∆z1

to plane 5, and ∆z2 to plane 6. Figure (a) is a 3-D representation of photon movement. The projector of the trajectory
in the ~x-~y plane is ~v, and the distance to the edge of the bin is ∆v. Figure (b) is a 2-D representation of the trajectory
projected in the ~x-~y plane. δ1 = tan−1(∆y1/∆x1). ∆v = ∆y1/ sin ϕ. Figure (c) is a 2-D representation of the trajectory
in the trajectory ~v-~z plane. α1 = tan−1(∆z1/∆v). s1 = ∆z1/ sin θ.



2.3. Drops of weight

By moving a distance of s1, the weight of the photon (Wnew) becomes

Wnew = Wold exp(−µa1s1) ,

where µa1 is the absorption coefficient of the bin that the photon crosses. The reduced weight is deposited to
the local bin that the photon just travels through.

2.4. Boundary conditions

When the photon travels to the outer boundary of the medium, the photon will be terminated and drop any
remaining weight in the edge bin the photon was in. When the photon travels to the top or bottom surface
of the medium, there are two possible results. If the incident angle θi is greater than the critical angle θc, the
photon will be totally reflected; otherwise, the photon is partially reflected back to the medium where the Fresnel
equation (Eq. 1) will be applied.

θc =

√
1− 1

n2
,

where n is the refractive index of the medium. The Fresnel reflectance R is

R =
1
2
(R‖ + R⊥) , (1)

where

R‖ =
tan2(θi − θt)
tan2(θi + θt)

and R⊥ =
sin2(θi − θt)
sin2(θi + θt)

,

where θi is the incident angle and θt is the transmission angle.

2.5. Changes of optical properties

After the weight of the local bin has been updated, the optical properties of the local bin are updated based
upon how much light is absorbed, that is the relationship between the optical properties and radiant exposure.
The radiant exposure H in each bin is calculated as

H =
Wtotal

Nvµa
· EA ,

where Wtotal is the totally deposited weight, N is number of photons/sec, v is the bin volume, µa is the absorption
coefficient at that bin, E is irradiance of the illumination, and A is the area of the illumination beam.

2.6. Check photon status

The weight of the photon attenuates as the photon moves; however, the weight never goes to zero. Therefore, we
set a weight minimum threshold to terminate the photons if the weight of the photon drops below this threshold.

3. DMC MODEL VERIFICATION

Verification of the DMC model was done by comparing the DMC results with numerical results for absorption
only media, and with the measurements on the optical property changes of unfilled resins.9
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Figure 4. Comparison of theoretical deposited energy density Eq. 3 (line) and simulation results (circle) for 1 J, 1 cm
diameter light beam into µa = 1 cm−1 medium with matched boundaries. Each of the error bars is the standard deviation
of 5 simulations, each of which is 200,000 photons.

3.1. Absorption only media

Three types of absorption properties were simulated:

1. Simple, fixed absorption coefficient media:
(a) For 1 J beam going through µa = 2 cm−1, refractive index nm=1.5, `=1 cm thick media, the specular
reflectance of the beam is

sr =
(

nm − nair

nm + nair

)2

. (2)

So, the theoretical total reflectance R and transmission T should be

R =
sr

1− (1− sr)2e−2µa`
= 0.04069 and T =

(1− sr)2e−µa`

1− sr2e−2µa`
= 0.12473 .

The DMC model generates R = 0.04068(6), and T = 0.12473(2) for five simulations of 200,000 photons.
(b) For a 1 J, r=0.5 cm radius light beam launched into µa = 1 cm−1, nm=1 medium, the theoretical
deposited energy density at the ith layer with thickness ∆x =0.1 cm is

Wi =
(
e−µa(i−1)∆x − e−µai∆x

)
/V , (3)

where i is the layer number 1,2,. . .,10, and V =πr2∆x is the volume of the deposited unit . It shows that
the DMC results match this numerical result (shown in Fig. 4).

2. Layered absorption coefficient media:
A 1 J, r=0.5 cm radius light beam was launched into a nm=1.5 medium whose absorption increases with
depth: µa,i = ik cm−1, where the increasing rate k is 0.2 and i is the layer number 1,2,. . .,10. Each layer
is ∆z=0.1 cm thick. The theoretical energy density at ith layer is

Wi =
1− sr

V

(
exp[

−i(i− 1)k
2

]− exp[
−i(i + 1)k

2
]
)

, (4)



where sr can be calculated from Eq. 2 and V = (πr2∆z) cm3. The comparison in Fig. 5 shows that the
DMC results match the numerical results.

3. Dynamic absorption coefficient media:
Assume 1 W/cm2 light beam was illuminated into a medium whose absorption coefficient dynamically
changes with deposited energy density:

µa,j(t) = 1− kWj(t) cm−1 , (5)

where k=0.05 and Wj(t) is jth-layer deposited energy density as a function of time t. Assume the layer
thickness is ∆z, then the irradiance at bottom of jth layer is

Ij = I0

j∏
i=1

exp(−µa,i∆z) .

Therefore,

Wj(t) = Wj(t−∆t) +
∆t

∆z
I0(1− exp(−µa,j∆z))

j−1∏
i=1

exp(−µa,i∆z) .

The final deposited energy density WDMC in each bin was calculated as

WDMC = w/Nv [J/cm3],

where w is the total weight in each bin, N = 4 · 104 photons/J, and v is the bin volume. In all the
simulations, the energy density and the absorption coefficient at each time point and each layer were
recorded for comparison. Figure 6 compares the results of W (t) and µa(t) at four different depths. Figure
7 compares the results of Wj and µa,j at five time points. The DMC results match the numerical model
within 1% difference.
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Figure 5. Comparison of theoretical deposited energy density Eq. 4 (line) and simulation results (circle) for 1 J, 1 cm
diameter light beam into µa,i = 0.2i cm−1 medium with specular reflection, where i is the layer number, 1, 2, . . ., 10.
Each layer is 0.1 cm thick. Each of the error bars is the standard deviation of 5 simulations, each of which is 200,000
photons.
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Figure 6. Comparison of numerical (line) and simulation results (circle) for 1 J/cm2 light beam into dynamic absorption
coefficient medium (Eq. 5). The top figure depicts the deposited energy density versus time at 4 different depths. The
bottom figure depicts the absorption coefficients versus time at 4 depths. Each errorbar is the standard deviation of 4
simulations, each of which is 1 million photons.
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Figure 7. Comparison of numerical (line) and simulation results (circle) for 1W/cm2 light beam into dynamic absorption
coefficient medium (Eq. 5). The top figure depicts the deposited energy density versus depth at 5 different times. The
bottom figure depicts the absorption coefficients versus depth at 5 times. Each errorbar is the standard deviation of 4
simulations, each of which is 1 million photons.
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3.2. Simulation of unfilled resin during curing

Based on the µa and radiant exposure H relationship9:

µa(H) = µao exp(−H/Htotal) , (6)

we simulated the µa of resin as a function of radiant exposure and compared the results with the experimental
measurements.9 Three simulations were performed for the three irradiances: 160, 90, and 30 mW/cm2. The µao

was 4.46 cm−1 and Htotal was 43 J/cm2, and a thickness of 1 mm resin was assumed. The light illumination was
assumed to be collimated, flat, and circular. The µa at different depths, the total reflectance and transmission
were recorded every 10 seconds for total of 120 seconds. Note that all the simulation parameters were assumed
at 469 nm wavelength.

The change of resin µa as a function of depth at different radiant exposure with increments of 6.4 J/cm2 is
shown in Fig. 8. Note that the radiant exposure H here is the H at the top surface, not the actual H at each
depth. The µa of the top layer is about 30% lower than the bottom µa after 19 J/cm2 of exposure. Assume that
the average of the µa throughout the depth represents the µa of the whole resin. The µa as a function of curing
time for the three irradiances is plotted in Fig. 9 and compared with the experimental results from our previous
studies.9 The overall differences between the model and experimental results were less than 5%.

4. DISCUSSION

Verification of the DMC model has been made by comparing with the analytical solutions and the experimental
results from our previous studies.9 The reflectance and transmittance results produced by the DMC for the
simplified absorption only cases were within 0.05% of differences to the analytical solutions. The simulation
results of dynamic absorption property media were within 1% of the numerical models (Fig. 6 and 7). The
simulation results of the dynamic absorption coefficient of unfilled resin during curing showed good agreement
with the experimental results with only 5% differences (Fig. 9). The errors are the combination of experimental
errors and statistic deviations in the model.

While the DMC model was able to simulate heterogeneous media with dynamic optical properties, the
computational effectiveness may be a consideration for using this model. The dimension of the media, the bin
sizes, the number of photons per recording time, and the absorption and scattering coefficient values all affect
the simulation time. Increasing the resolution on the grid sizes will increase the accuracy of the local energy
deposition and optical property changes, but will increase statistical variations since fewer photons are deposited
per bin. One advantage of this DMC code is that the dimension of the bins can be nonsymmetrical. Therefore,
for x− y symmetrical system, one can have finer grid sizes along the light illumination depth (e. g. z direction)
and larger grid sizes in the x − y dimension. In this way, the calculation rate can be increased. To get the
simulation results shown in Fig. 9 using the DMC code, the propagation of a total of 100,000 photons required
approximately 1 minutes of processor time on a Mac G3 500 MHz processor computer.

In conclusion, this study has shown that the DMC model can be used to simulate the light transport in
a photocured material that has dynamical optical properties. The time-resolved energy deposition and opti-
cal property distributions in the materials, as well as the time-resolved reflectance and transmittance can be
calculated during photon absorption.
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