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ABSTRACT

The propagation of light through complex structures, such as biological tissue, is a poorly understood phe-
nomenon. Current practice typically ignores the coherence of the optical field. Propagation is treated by Monte
Carlo implementation of the radiative transport equation, in which the field is taken to be incoherent and is
described solely by the first-order statistical moment of the intensity. Although recent Monte Carlo studies have
explored the evolution of polarization using a Stokes vector description, these efforts, too are single-point statis-
tical characterizations and thus ignore the wave nature of light. As a result, the manner in which propagation
affects coherence and polarization cannot be predicted.

In this paper, we demonstrate a Monte Carlo approach for propagating partially coherent fields through com-
plicated deterministic optical systems. Random sources with arbitrary spatial coherence properties are generated
using a Gaussian copula. Physical optics and Monte Carlo predictions of the first and second order statistics of
the field are shown for coherent and partially coherent sources for a variety of imaging and non-imaging config-
urations. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all
cases. Finally, we discuss convergence criteria for judging the quality of the Monte Carlo predictions.

Ultimately, this formalism will be utilized to determine certain properties of a given optical system from
measurements of the spatial coherence of the field at an output plane. Although our specific interests lie in
biomedical imaging applications, it is expected that this work will find application to important radiometric
problems as well.

Keywords: Partial Coherence, Diffraction, Stochastic, Cross-Spectral Density, Complex Coherence Factor

1. INTRODUCTION

Simulating changes in the spatial coherence of an optical field requires two things (1) a method for evolving
the field and (2) a method for creating an ensemble of fields with a specified spatial coherence. Traditionally
physical optics techniques have been used to evolve the field.1–3 This leads to challenging integrals that typically
need to be calculated by numerically. In this work, Monte Carlo techniques are used to approximate classic
Huygen-Fresnel evolution of a field. A copula technique to generate the ensemble of source fields.4 We compare
our results with standard physical optics calculations to show the accuracy and limitation of our method.

This paper is limited to two-dimensional evolution (cylindrical) of light. The field U is written as

U(x, z, t) = U(x, z) eiωt

and the time dimension is will be omitted for brevity. The axial direction is z and the transverse direction is x.
The ensemble intensity S(x, z) and the cross-spectral density µ(x1, z; x2, z) for a partially coherent field are1,5

S(x, z) = 〈U(x, z)U∗(x, z)〉; µ(x1, z; x2, z) =
〈U(x1, z)U∗(x2, z)〉√

S(x1, z)
√

S(x2, z)
(1)

where U∗(x, z) is the complex conjugate of U(x, z). The angle brackets denote ensemble averages over all field
realizations. For convenience the (cylindrical) line source is located in the plane z = 0.
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2. MONTE CARLO SIMULATION OF HUYGENS-FRESNEL WAVES

x

z

|U(x, 0)|eiφ(x,0)

|U(x′, 0)|eiφ(x′,0)

Figure 1. Rays being used
to approximate a Huygen’s
wavelet.

The source field U(x, 0) is evolved to the plane z by using a Monte Carlo sampling
technique. Each point in the source wavefront is considered to be the origin of
a cylindrical wave (Huygens wavelet) emanating from that point. Each wavelet is
randomly sampled by launching rays from its center; the initial amplitude and phase
of a ray launched from the point (x, 0) is

|U(x, 0)|eiφ(x,0)

The phase of each ray changes as it moves; a ray that has travelled a distance d
will have kd added to its phase where k is the wavenumber (k = 2π/λ and λ is the
wavelength). When a ray reaches the observation plane, it is added coherently to
all others that have reached the same location.

Monte Carlo sampling is simple and flexible, but can be computationally inten-
sive. Typically the relative error decreases as

√
N where N is the number of rays

used. Consequently to decrease the error by a factor of ten, the number of rays must
be increased by a factor of 100. Variance reduction techniques are often used.

One obvious improvement when using Monte Carlo to sample Huygen’s wavelets is to limit the range of angles
at which rays are launched to those that will reach the aperture or detector. However, this improvement creates
a subtle bias when comparing results from different launch locations. If equal numbers of rays are launched from
two locations and the subtended angles differ, then the number of rays/radian will be different. This must be
corrected by weighting each ray by the subtended angle used to generate its launch angle. If every source location
launches the same number of rays, then the contributions from all source locations will be commensurate and
the results can be added together.

Another efficiency improvement is to calculate how a flat coherent source field U(x, 0) = 1 changes as each
source element propagates to any detector element. If Ns is the number of source elements and Nd is the
number of detector elements, then this information can be recorded in an Ns × Nd matrix. In the limit of an
infinite number of infinitesimal source and detector elements, this mapping is functionally equivalent to a Green’s
function. For a finite number of elements the detector field can be written in terms of the Green’s matrix Gij

Uj = GijUi

where the source field is represented as a vector Ui and the observation plane fields by Uj . Monte Carlo is used
to generate the values of Gij by tracing rays from the ith source element to the jth detector element.

Young’s classic double-slit experiment is a convenient test of our Monte Carlo sampling strategy. The source
has constant amplitude across each slit and is perfectly-coherent (so partial coherence is not tested). The source
field is unity U(x, z) = 1 within the slits and zero elsewhere. The Fraunhofer approximation for the field intensity
resulting from two slits (width 2a separated by b) at a distance d is

S(x, d)
S(0, d)

= sinc2

(
kax√

d2 + x2

)
cos2

(
kbx

2
√

d2 + x2

)
(2)

where sinc(x) = sin(x)/x.

For the simulation shown in Fig. 2, the detector distance (10, 000λ) is larger than a2/λ = 100λ and the Fraun-
hofer approximation is appropriate. However when the detector elements were 10λ wide, enough to adequately
sample the ∼ 120λ interference peaks in the intensity, the Monte Carlo results were poor. The problem was that
the phase of the field changes by ∼ 1 radian across each detector element and the consequently the intensity
fluctuations were averaged out. The solution was to decrease the size of each detector elements to 1λ. In this
case excellent agreement between Monte Carlo simulations and physical optics calculations was achieved.

The Monte Carlo technique can be used to focus a cylindrical wave by correcting the phase of each ray as
it leaves the source. For a focal length of f , the phase adjustment is −ik

√
f2 + x2 for a ray leaving from a

SPIE Proceedings on Biomedical Applications of Light Scattering III Volume 7187



position x. Fig. 3 shows the intensity in the focal plane of a perfectly-coherent flat field that has passed through
a f/1 system. The lateral extent of the source is 31,620λ and the focal length is 31, 620λ. The physical optics
calculation6 for the field at x′′ in the focal plane is achieved by integrating over all source positions x′

U(x′′, f) =
∫ +∞

−∞
U(x′, 0)

i

λ
exp

(
−ik

√
f2 + x′2

) f

s
H

(1)
1 (ks) dx′

where U(x′, 0) = 1 and s =
√

(x′ − x′′)2 + f2. This calculation is not amenable to straightforward simplification
because the binomial approximation is poor for this geometry.
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3. GENERATION OF FIELD REALIZATIONS

The Gaussian copula algorithm is used to produce source fields with prescribed amplitude and correlation.3,4

A Box-Muller transformation is used to produce jointly normal deviates Y1 and Y2 from independent uniform
deviates X1 and X2

Y1 =
√
−2 ln X1 cos(2πX1) and Y2 =

√
−2 ln X2 sin(2πX2)

These normal deviates are scaled and rotated[
φ1

φ2

]
=

2π√
2

[
1 −1
1 1

] [√
1 + r 0
0

√
1− r

] [
Y1

Y2

]
to obtain normal deviates φ1 and φ2 correlated by r. The phases φ1 and φ2 are used to fill a matrix with complex
numbers having unit amplitude. Spatially band-limited fields are generated by masking this matrix so that it is
filled with zeros except for a central circular set of values. Fourier transforming this matrix produces realizations
with a correlation given by exp(−σ2/2) where σ2 is the variance of the phase difference φ1−φ2. An ensemble of
216 line source realizations were generated with this method. Each line source consists of 51 complex numbers.
The ensemble of realizations had constant amplitude and prescribed spatial correlation properties.

Most work involving partial coherence assumes that the fields have Gauss-Schell spatial correlation1

〈U∗(x′, 0)U(x′′, 0)〉 ≡ exp
(
− (x′ − x′′)2

2σg

)
where x′ and x′′ are points in the source aperture and σg is the effective spectral coherence length of the field
in the aperture. The ensemble of realizations had constant amplitude and Gauss-Schell spatial correlation.
Specifically, σg/a = 0.6 where 2a was the extent of the source field (σg = 9486λ).

The number of fields used in the ensemble affects the fidelity of the ensemble average. In Fig. 4 below,
the intensity should be constant and equal to one across the field. When 216 fields were averaged, the intensity
remains within a few percent of one across the entire source. As the number of fields that were averaged decreases,
the ensemble intensity varies more across the source. For example, 210 fields were needed before the intensity was
consistently above 0.9. The spatial coherence tended to converge more rapidly to desired distribution and only
required 28 fields before becoming reasonably accurate. The same sets of realizations used to calculate Fig. 4
were used in the rest of the graphs in this paper.

A primary question about the propagation of partial coherence relates to the convergence properties of the
process. The Green’s matrix formalism nicely separates the randomness of the source fields from the randomness
introduced by the Monte Carlo approximation of the Green’s matrix. We make use of this fact in the next two
sections to show the sensitivity of the Monte Carlo process on the number of rays used to calculate the Green’s
matrix and the number of fields propagated with an accurate Green’s matrix.
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4. THE EFFECT OF THE NUMBER OF RAYS ON PROPAGATION

The influence of the number of rays used to generate the Green’s matrix was evaluated first. Different numbers
of rays (ranging from 104 to 109) were used to generate the Green’s matrix. For this simple f/1 geometry, 109

rays took about a minute on a 2GHz computer. Once the Green’s matrix had been estimated, it was used to
propagate 216 fields to the focal plane. The ensemble intensity and the cross-spectral density were calculated and
plotted along with the more traditional physical optics numerical integration result. The Monte Carlo method
obviously works well for large numbers of rays, but what was surprising is that reasonable results could be
achieved with only 105 rays. Since there were 401 detector elements, this works out to an average of 250 rays
that reached each bin.
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Figure 2. Simulation of Young’s two-slit experiment using 108 rays. The top figures show the intensity and phase when
the detector only has 200 elements; the bottom figures show the improvement in results when the number of detector
elements is increased to 2000. The slits are 20λ wide and have a center-to-center distance of 60λ. The detector is at a
distance of 10, 000λ. In the bottom two figures only 200 of the 2000 elements are plotted for clarity.
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Figure 3. Intensity and phase in the focal plane of a focused perfectly-coherent cylindrical source. This is an f/1 system
with f = 31, 620λ and 108 rays were used. Each detector element was 0.15λ wide.
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Figure 4. Ensemble averages of the source intensity and the modulus of the cross spectral density µ(x, 0; 0, 0).
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Figure 5. The normalized intensity S(x, f)/S(0, f) in the focal plane for a focused partially-coherent source. The detector
was located in the focal plane at z = f = 31, 620λ. Different numbers of rays were used to calculate the Green’s matrix
Gij that was used to propagate 216 source fields to the focal plane. The detector had 401 pixels distributed over 10λ.
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The cross-spectral density was more sensitive to errors in the Green’s matrix than the ensemble intensity. As
can be seen in the lower left graph of Fig. 6, 106 rays did a poor job of approximating the cross-spectral density
outside the first peak. Increasing the number of rays by a factor of ten to 106, improved the approximation
significantly.
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Figure 6. The cross-spectral density µ(x, f ; 0, f) in the focal plane at z = f = 31, 620λ. As indicated in each graph,
different numbers of rays were used to calculate the Green’s matrix Gij that was used to propagate 216 source fields to
the focal plane. The detector had 401 pixels (only 100 plotted for clarity) and a total lateral extent of 10.0λ.

SPIE Proceedings on Biomedical Applications of Light Scattering III Volume 7187



5. THE EFFECT OF THE NUMBER OF FIELDS ON PROPAGATION

In this section, the Green’s matrix was calculated with 108 rays using the same f/1 focusing geometry. Different
numbers (26 to 216) of fields were propagated from the source to the focal plane. The ensemble intensity and
cross-spectral density were then calculated. The intensities are graphed in Fig. 7 below and show that reasonable
accuracy in the ensemble intensity was achieved with only 26 fields. The cross-spectral density shown in Fig. 8 is
also quite good when the same number of fields were used. Considering that Fig. 4 shows a 40% variation in the
ensemble source intensity when only 26 fields were used, these results in the focal plane were surprisingly good.
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Figure 7. The normalized intensity S(x, f)/S(0, f) in the focal plane at z = f = 31, 620λ. Various numbers of fields were
used. The detector had 401 pixels (only 100 plotted for clarity) and is 10.0λ wide.
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6. CONCLUSION

Physical optics and Monte Carlo predictions of the first and second-order statistics of the field have been shown
for coherent and partially coherent sources. Excellent agreement between the physical optics and Monte Carlo
predictions was demonstrated in all cases. The convergence criteria for judging the quality of the Monte Carlo
predictions is shown to depend on the number of rays used as well as on the number of fields propagated. The
convergence is more sensitive low numbers of rays than it is to relatively low numbers of fields. The merger
of Monte Carlo and the copula method is a simple, yet powerful, tool for studying the propagation of partially
coherent fields.
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Figure 8. The cross-spectral density µ(x, f ; 0, f) in the focal plane at z = f = 31, 620λ. Various numbers of fields were
used. The detector had 401 pixels (only 100 plotted for clarity) and is 10.0λ wide.

SPIE Proceedings on Biomedical Applications of Light Scattering III Volume 7187



REFERENCES
1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, Cambridge University Press, Cambridge,

UK, 1995.
2. D. G. Fischer and T. D. Visser, “Spatial correlation properties of focused partially coherent light,” J. Opt.

Soc. Am. A 21, pp. 2097–2102, 2004.
3. D. G. Fischer, S. A. Prahl, and D. D. Duncan, “Monte Carlo modeling of spatial coherence: free-space

diffraction,” J. Opt. Soc. Am. A 25, pp. 2571–2581, 2008.
4. D. D. Duncan and S. J. Kirkpatrick, “The copula: a tool for simulating dynamic speckle,” J. Opt. Soc. Am.

A 25, pp. 231–237, 2008.
5. J. W. Goodman, Statistical Optics, Wiley, 1985.
6. J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction, and Focusing of Light, Sound, and Water

Waves, Hilger, 1986.

SPIE Proceedings on Biomedical Applications of Light Scattering III Volume 7187


