INTRODUCTION

These tables were originally published in: W. F. Cheong, S. A. Prahl, and A. J. Welch, "A Review of the Optical Properties of Biological Tissues," IEEE J. Quantum Electronics, **26**, 2166-2185 (1990). Updated by Wai-Fung Cheong. Further additions by Lihong Wang and Steven L. Jacques. August 6, 1993

Tissue	λ (nm)	μt cm-1	μa cm-1	μ _s cm-1	μ _S (1-g)	g	μeff cm-1	Tissue Preparation and geometry	Experimental method	Theory (Inverse form)	Reference
Adipose	()										
Cow	632.8	_	_		_	_	3.4	in situ, slabs	interstitial fiber detectors	Diffusion Theory	Preuss et al., 1982
Pig	630	376±69		—	—	0.77	—	ground, frozen, thawed, thin slab	direct T ^a , goniophotometry	Beer's Law Mie theory	Flock et al., 1987
	630 789	_	0.1 0.06		15.4 13.6		2.2 1.6	in situ, ~5 cm ³	interstitial cylindrical source and flat fiber detectors	Grosjean's model, '56 (spherical geometry)	Arnfield et al., 1992
Aorta											-
Human • normal	308	_	33	_	77	_	104	post mortem (6h),	60 ns 308 laser pulses; optical	Adding-Doubling	Oraevsky et al.,
• fibrous plaque	308		24	_	81	_	87	excised, in 4°C saline, used within 1 h, slab multichannel analyzer to isola 308 nm line; integrating spher			1992.
• normal	632.8	316	0.52	316	41.0	0.87	8.0	<i>post-mortem</i> , resected, in saline, slab	integrating sphere, gonio-photometry	Diffusion Theory, fit asymptotic T + HG ^b	Yoon et al., 1988
	1064 (1)	—	0.5	239	23.9	0.9 c	6.0	post-mortem, slab	(1) integrating sphere and	(1) Monte Carlo	(1) Essenpreis, 1992
	(2)	_	0.7	—	22.4		7.0		(2) integrating sphere only	 (2) Diffusion Theory (∂-Eddington) [Prahl 1988] 	⁽²⁾ Cheong, 1990
	1320 (1)		2.2 4.3	233	23.3 17.8	0.9 c	13.0 11.8	as (1) above as (2) above	as (1) above as (2) above	as (1) above as (2) above	— as above — — as above —
Human • fibro-fatty	(2) 355 532 1064		17.7 3.6 0.09		64.9 24.8 7.7	 	66.1 20.4 1.45	<i>post-mortem</i> , resected, slab usedwithin 24 h.	photoacoustic transducer to detec shape + peak amplitude of laser- induced pressure wave.	t Acoustic Theory	Oraevsky/Jacques19 93
normal intima	476 580 600 633	252 191 182 175	14.8 8.9 4.0 3.6	237 183 178 171	45.0 34.8 33.8 25.7	0.81 0.81 0.81 0.85	 	post-mortem, frozen, sliced into thin slabs, thawed	integrating sphere and direct T measurements	Diffusion Theory (delta-Eddington)	Keijzer <i>et al.</i> , 1989
normal media	476 580 600 633	252 191 182 312	7.3 4.8 2.5 2.3	410 331 323 310	45.1 33.1 35.5 31.0	0.89 0.90 0.89 0.90	 	as above	as above	——— as above ———	Keijzer <i>et al.</i> , 1989
normal adventitia	476 580 600 633	252 191 182 201	18.1 11.3 6.1 5.8	267 217 211 195	69.4 49.9 46.4 37.1	0.74 0.77 0.78 0.81	 	as above	as above	as above	Keijzer <i>et al.</i> , 1989

OPTICAL PROPERTIES OF TISSUES IN VITRO

^a T=transmission; R=reflection

^b HG=Henyey-Greenstein phase function

^c From reference #155 in Essenpreis, 1992

Tissue	λ (nm)	$_{\rm cm-1}^{\mu_t}$	μ _a cm-1	$m_{s}^{\mu_{s}}$ cm ⁻¹	μ _s (1-g)	g	μeff cm ⁻¹	Tissue Preparation and geometry	Experimental method	Theory (Inverse form)	Reference
Pig aorta	1060 1320	_	0.33 1.5	_	20.1 18.3		_	resected, in saline, used within 24 h, slab	double integrating spheres (excl. sphere corrections)	Diffusion Theory (delta-Eddington)	Cheong, 1990
Biliary Caculi (Gallstones)											
Porcinement	351 488 580 630 1060		102±16 179±28 125±29 85±11 121±12	 	 	 	 	dehydrated, embed in plastic, sliced into ~1 mm slabs	staring infrared detector measures thermal response time	pulsed photothermal radiometry (PPTR)	Long et al., 1987
Cholesterol	351 488 580 630 1060		88 ± 7 62 ± 15 36 ± 7 44 ± 10 60 ± 9		 			as above	as above	as above	Long <i>et al.</i> , 1987
Bladder								· ·	·		<u> </u>
Dog	633 (1) (2)		0.6 1.25	59 44		0.85 0.92	_	resected, in saline < 24 h, slab	(1) interstitial fiber detection in situ (spherical field)(2) integrating sphere	 (1) van de Hulst solution (2) Diffusion Theory 	 (1) Star <i>et al.</i>, 1987b (2) Cheong <i>et al.</i>, 1987
	1064 1320		0.25 1.3		3.2 2.4	0.962 d 0.962		resected, in saline < 12 h, slab	two integrating spheres, direct T (excl. sphere corrections)	Diffusion Theory (delta-Eddington)	Cheong, 1990
Blood (Whole)											
Human, Hct=0.41 oxygenated	665 (1) 960 685 (2)	1247 508 1416	1.30 2.84 2.65	1246 505 1413	6.11 3.84 —	0.995 0.992 0.990	 	diluted, heparinized, in cuvettes	 absorbance+goniometry radial reflectance profile 	(1) Mie Theory(2) Transport Theory	 (1) Reynolds <i>et al.</i>, 1976 (2) Pedersen <i>et al.</i>, 1976
Hct=0.47 partially oxygenated	450 488 514 577 630 760	3320 3330 3430 3440 3670 2840	381 133 116 301 14.3 15.5	2940 3190 3320 3140 3660 2820	8.3 4.0 4.1 7.3 8.9 7.9	0.9972 0.9987 0.9988 0.9977 0.9976 0.9972	668 235 206 528 31.6 33.0	freshly drawn, hepari- nized, oxygenated at atmospheric equili- brium; semi-infinite slab (R_d); thin cuvettes (μ_a, μ_t)	diffuse R of whole blood; direct T of diluted blood, hemolyzed RBC's, and centrifuge-isolated plasma.	Inverse Adding- Doubling and Beer's Law	Jacques, 1993a

d g-value taken from 1320 nm data

Tissue	λ (nm)	μ _t cm-1	μ _a cm-1	μ _s cm ⁻¹	μ _S (1-g)	g	μeff cm-1	Tissue Preparation and geometry	Experimental method	Theory (Inverse form)	Reference
Blood (Whole) Dog	632.8 660 800					$0.9845 \\ 0.9840 \\ 0.980$		heparinizedwhole blood, in cuvettes	goniophotometry	fit to 2-parameter phase function [Reynold <i>et al.</i> , 1980]	Steinke et al., 1988
Blood clots											
Canine: arterial	1060 1320	_	5.5±1.6 1.6±1.7		9.6±2.0 10.0±2.7	0.93±.02		thrombin added to freshly drawn blood, in thin rectangular glass	double integrating spheres, direct T at 1320 nm only, (incl. sphere corrections)	Diffusion Theory and Beer's Law	Cheong, 1990
venous	1060 1320		5.4±3.9 1.9±.8		9.2±3.6 9.5±3.2	0.93±.06		holders	(men sphere contections)		
Brain											
Calf	633	_	0.19		6.6	—	2.5(1)-3.4	3.4 frozen, sliced into slabs integrating sphere (μ_a,μ_s'); and thawed interstitial detectors (μ_{eff})		Similarity transform, 2-parameter phase:	Karagiannes <i>et al.</i> , 1989
	1064 1320	_	0.36 0.84		6.7 5.4	_	2.5 4.0		interstituti detectors (µeii)	(1) Diffusion Theory	(1) Doiron <i>et al.</i> , 1983
Cat	488 514.5 630						10.9 13.3 5.3–8.9	<i>post mortem,</i> bulk tissue	interstitial flat cut fiberoptic detectors	Diffusion Theory	Doiron et al., 1983
• Adult	488 514 660 1060	 	 	 	 	 	14.0-25.0 14.0-16.7 7.0-12.5 2.3-3.4	post-mortem, blood vessels not saline- irrigated, <i>in situ</i>	interstitial source and fiber detectors	Diffusion Theory	Svaasand <i>et al.</i> , 1983
	630	—	0.3-1.0	_	30.0-40.0	_	8.3	post-mortem, slab	integrating sphere, direct T	Diffusion + Kubelka	Sterenborg <i>et al.</i> ,
• Neonate	488 514 660 1060	 	 	 			5.9-7.9 5.8-9.0 2.5-3.3 1.1-1.4	post-mortem, blood vessels not saline- irrigated, <i>in situ</i>	interstitial source and fiber detectors	Diffusion Theory	Svaasand <i>et al.</i> [1983]
• Adult white mater	632.8 1064		2.2±.2 3.2±.4	532±41 469±34	91±5 60.3±2.5	0.82±.01 0.87±.007	23.8±1.4 24.1±1.7	freshly resected, used within 12h; slabs	integrating sphere, direct T (include sphere corrections)	Inverse Adding- Doubling	Beek et al., 1993a
Adult grey mater	632.8 1064		2.7±.2 5.0±.5	354±37 134±14	20.6±2. 11.8±.9	$0.94 \pm .004$ $0.90 \pm .007$	13.3±.9 15.7±1.3	— as above —	as above	as above	as above
Pig	633	0.26-0.64		52-57		0.945 (1)	4.3-14.2	post-mortem, bulk;	interstitial fiber detectors;	Diffusion Theory / "Added Absorber";	Wilson <i>et al.</i> , 1985, 1986a; Preuss <i>et</i> <i>al</i> 1982:
								(1) frozen, cut, thawed	(1) goniophotometry (g)	(1) Mie theory	(1) Flock <i>et al</i> , 1987

Tissue	λ (nm)	μ _t cm-1	μ _a cm-1	μ _s cm-1	μ ₈ (1-g)	g	μeff cm-1	Tissue Preparation and geometry	Experimental method	Theory (Inverse form)	Reference
Breast							•				
Glandular	540 700 900	 	3.6±2 0.5±.1 0.6±.1		24±6 14±3 10±2		 	frozen sections, thawed; 4-24 μm slabs for μt; ~ 1 mm slabs for (R,T)	single integrating sphere with monochromator for R and T; 2-polarizers to filter scattered axial light for direct T.	Monte Carlo; look up tables of (R,T) as function of albedo, g, and μ_t	Peters et al., 1990
Adipose	540 700 900		2.3±.6 0.7±.1 0.8±.1		10±2 9±1 8±1			as above as above		— as above —	Peters et al., 1990
Fibrocystic	540 700 900		1.6±.7 0.2±.1 0.3±.1	 	22±3 13±2 10±2			— as above —	— as above —	— as above —	Peters et al., 1990
Fibroadenoma	540 700 900		4.4±3 0.5±.5 0.7±.5		11±3 7±2 5±1			— as above —	— as above —	— as above —	Peters et al., 1990
Ductal carcinoma	540 700 900		3.1±1 0.5±.1 0.5±.2		19±5 12±3 9±3			as above as above		— as above —	Peters et al., 1990
Cartilage											
Rabbit	632.8		0.33±.05	214±.2	19.4±1.1	0.909±.005	4.4±.4	freshly resected, used within 12h; slabs (1 <t<10)< td=""><td>two integrating spheres , direct T (incl. sphere corrections)</td><td>Inverse Adding- Doubling</td><td>Beek et al., 1993a</td></t<10)<>	two integrating spheres , direct T (incl. sphere corrections)	Inverse Adding- Doubling	Beek et al., 1993a
Esophagus Human	632.8		0.4		12			2.5 mm slab	integrating sphere	Adding-Doubling	Jacques, 1993b
Kidney											
Cow	630		—	—		—	7.9	bulk, in situ	interstitial fiberdetectors	Diffusion Theory	Preuss et al., 1982
	630 789	_	1.21 0.5		11.8 5.4	_	6.9 3.0	bulk	interstitial cylindrical source and flat cleave fiber detectors	Grosjean's model (spherical geometry)	Arnfield et al., 1992
Human	630						4.0	bulk, in situ	interstitial fiber detectors	Diffusion Theory	Eichler et al., 1977
Pig cortex	630		_	_	_	_	4.8	bulk, in situ	interstitial fiber detectors	Diffusion Theory	Doiron et al., 1983
Liver											
Cow	633 1064 1320		3.21 0.53 0.70		5.23 1.76 1.2		6.8 3.2 2.0	frozen sections (slab), thawed, also bulk	integrating sphere; interstitial detectors for µeff	Diffusion Theory; Phase function fit	Karagiannes <i>et al.</i> 1989

Tissue	λ (nm)	μ _t cm-1	μ _a cm ⁻¹	μ _s cm-1	μ _S (1-g)	g	μeff cm ⁻¹	Tissue Preparation and geometry	Experimental method	Theory (Inverse form)	Reference
Liver Cow	355 532 1064		29.4 10.9 0.1		31.5 11.9 12.0		73.3 27.3 1.9	bought, refrigerated, no saline or water rinse, slab	photoacoustic transducer to detect shape + peak amplitude of laser- induced pressure wave.	t Acoustic Theory	Oraevsky/Jacques, 1993
Human	630	—	3.2	414		0.95 e	_	post mortem, thin slab	integrating sphere absorb-ance; goniophotometry	Beer's Law	Andreola et al, 1988
	515	304	18.9	285	_		—	frozen sections, slab	— as above —	Beer's Law	Marchesini et al. 1989
Pig	630		2.7	—	17.0	_	12.6-13.0(1)	post mortem, in situ	interstitial fiberoptic detectors	Diffusion Theory	Wilson <i>et al.</i> , '86b, (1) Doiron <i>et al.</i> , '83
	630 789		2.3 0.9	_	9.5 6.5	_	_	bulk	interstitial cylindrical source and flat cleave fiber detectors	Grosjean's model (spherical geometry)	Arnfield et al., 1992
	355 532 1064		27.6 7.9 0.08	 	28.9 11.7 10.1		68.4 23.4 1.6	bought, refrigerated, no saline or water rinse, slab	photoacoustic transducer to detect shape + peak amplitude of laser- induced pressure wave.	t Acoustic Theory	Oraevsky/Jacques19 93
Rabbit	632.8		11.3	190	8.9	0.934	21.9 (12.5 Wils)	resected <10 min. after rat sacrifice; all slabs (1 <t<10) 12="" h.<="" td="" within=""><td>two integrating spheres, direct T (include sphere corrections)</td><td>Inverse Adding- Doubling</td><td>Beek et al., 1993</td></t<10)>	two integrating spheres, direct T (include sphere corrections)	Inverse Adding- Doubling	Beek et al., 1993
Rat	1064 1320 2100		1.29±.12 4.29±.14 21.2±1.8	63.4±.8 15.8±1.3 27±11	8.25 2.44 5.42	0.870 0.846 0.800 ^{##}	 	bought, no rinse or refrigeration, slab	integrating sphere + baffle corrections; goniophoto-metry on 25µm samples	Inverse Monte Carlo [Piet, 1992]	Essenpreis, 1992
	355 532 1064		37.1 8.2 0.14	 	20.5 10.3 11.3		80.1 21.3 2.2	fresh from sacrificed rat, refrigerated, used within 24 hrs.	photoacoustic transducer to detect shape + peak amplitude of laser-induced pressure wave.	Acoustic theory	Oraevsky/Jacques19 93
Rat	355 400 450 500 550 600 633 650 700 750 810		34 47 36 12 23 9.6 3.0 2.7 1.5 1.3 0.72		19 18 16 13 11 8.9 7.5 7.6 6.8 6.5 5.6		73 96 74 29 49 23 9.8 9.0 6.2 5.6 3.7	freshly excised from sacrificed rat	integrating sphere	Inverse Adding- Doubling	Jacques, 1993a
Rat	488 633 800 1064 1320 2100	 	12.2 6.5 5.7 5.9 6.6 27.2	173.5 143.7 97.0 60.9 44.2 24.5		$\begin{array}{c} 0.93 \\ 0.95 \\ 0.94 \\ 0.92 \\ 0.91 \\ 0.80 \end{array}$	29.9 16.3 14.0 13.8 14.5 51.2	fresh and frozen sections thin slab between glass slides	total R and total R unscattered T	diffusion theory (Delta-Eddington)	Parsa et al, 1989

e average value ## reference [165] in Matthias diss.

Tissue	λ (nm)	μ _t cm-1	μ _a cm-1	μ _s cm-1	μ _S (1-g)	g	µeff cm ⁻¹	Tissue Preparation and geometry	Experimental method	Theory (Inverse form)	Reference
Liver Rat	850 900 950 1000 1064 1100	 	0.73 0.75 0.73 0.61 0.34 0.29	 	5.4 5.0 4.8 4.5 4.2 4.1	 	3.6 3.6 3.5 3.1 2.2 2.0	freshly excisedfrom sacrificed rat	integrating sphere	Inverse Adding- Doubling	Jacques, 1993a
	632.8 1064		3.8 2.4	280 196	13.0 11.2	0.952 0.948	13.8 9.8	excised<10 min. post rat sacrifice; all slabs (1 <t<10) 12="" h.<="" td="" within=""><td>two integrating spheres, direct T (incl. sphere corrections)</td><td>Inverse Adding- Doubling</td><td>van Hillergersberg et al., 1993</td></t<10)>	two integrating spheres, direct T (incl. sphere corrections)	Inverse Adding- Doubling	van Hillergersberg et al., 1993
Lung											
Dog Human	632.8		3.2±.7	230±5	15.4±4.3	0.935±.017	11.6±1.5	as above	— as above — —	as above	Beek et al., 1993a
deflated lung Bronchial mucosa	633 633	_	_			_	11.0 9.1	post mortem, in situ post mortem, in situ	interstitial fiber detectors as above	Diffusion Theory — as above —	Doiron <i>et al.</i> , 1982 Doiron <i>et al.</i> , 1982
Squamous cell carcinoma	633	_	_	—	_	_	6.3	post mortem, in situ	as above	— as above —	Doiron et al., 1983
Pig	632.8 790 850	 	2.0±.1 2.4±.3 0.76±.07	301±22 263±18 278±21	19.7±1.4 20.0±1.7 10.9±.7	0.933±.003 0.926±.004 0.957±.002	11.3±.6 12.4±1.3 4.8±.3	excised <10 min. post sacrifice; used within 12 h; slabs (1 <t<10)< td=""><td>two integrating spheres, direct T (incl. sphere corrections)</td><td>Inverse Adding- Doubling</td><td>Beek et al., 1993a</td></t<10)<>	two integrating spheres, direct T (incl. sphere corrections)	Inverse Adding- Doubling	Beek et al., 1993a
Rabbit	632.8		2.8±.2	330±21	30.8±3.2	0.904±.012	16.5±1.0	—— as above ——	as above	—— as above ——	Beek et al., 1993a
Meniscus											
Human	360 400 488 514 630 800 1064		13 4.6 1 0.73 0.36 0.52 0.34		108 67 30 26 11 5.1 2.6		69 31 9.6 7.7 3.5 3.0 1.7	frozen, thawed, slab	integrating sphere	Inverse Adding- Doubling	Schwartz <i>et al.</i> , 1993
Muscle					-		-	<u>-</u>			
Chicken	633	230	0.12		8.0		1.7	bulk, coarsely ground	interstitial flat cut detectors;	Diffusion Theory	Wilson <i>et al.</i> , 1986a
				_			1.34	—— as above ——	as above		Marijnissen <i>et al.,</i> 1984
		345	—	—	—	0.965	—	ground, frozen, thinly sliced, thawed	direct T, goniophotometry	Beer's Law and Mie Theory	Flock <i>et al.</i> , 1987

Tissue	λ (nm)	μ _t cm-1	μ _a cm-1	μ_{s} cm-1	μ s (1-g)	g	μeff cm-1	Tissue Preparation and geometry	Experimental method	Theory (Inverse form)	Reference
Muscle Chicken	630 789		0.12 0.06		9.03 7.57	_		<i>in situ,</i> bulk	interstitial cylindrical source (2 mm) and flat cleave fiber detectors	Grosjean's model (spherical geometry)	Arnfield et al., 1992
Cow	630		_	—	—	—	4.3-6.9	post mortem, bulk, in situ	interstitial flat cut detectors	Diffusion Theory	Doiron <i>et al.</i> , , 1983 Preuss <i>et al.</i> , 1982 Bolin <i>et al.</i> , 1987
	633	121	1.50	—	7.0	—	6.2	<i>in situ</i> , bulk	interstitial fiberoptic detectors	Diffusion Theory + "Added Absorber"	Wilson et al., 1986a
	633	328		—	—	0.941		ground, frozen, thinly sliced, thawed	direct T; goniophotometry	Beer's Law and Mie Theory	Flock et al., 1987
	633 1064 1320		1.7 1.2 2.3		4.4 2.8 2.4		3.9 2.3 5.6	Frozen sections, thawed, slab	integrating sphere: R and T	Similarity transform, numerical fit to 2-parm phase function	Karagiannes <i>et al.,</i> 1989
Human	515	541	11.2	530	_	—	_	frozen sections, thin slab	absorbance with IS, direct T from goniophotometry	Beer's Law	Marchesini <i>et al.</i> , 1989
Pig	633	41.0	1.0	40.0	40.0 1.2 0.97 — frozen, thawed, slab integrating sphere		integrating sphere	Monte Carlo	Wilksch et al., 1984		
	1060	_	2.0	_	_	_	_	bulk slab photoacoustic transducer		Acoustic Theory	MacLeod et al., '88
	630 633		1.2 0.59	239 179	62.1 24.7	0.732 0.858	15.0 6.7	excised <10 min. post sacrifice; used within 12 h; slabs (1 <t<10)< td=""><td>two integrating spheres, direct T (incl. sphere corrections)</td><td>Inverse Adding- Doubling</td><td>Beek et al., 1993a</td></t<10)<>	two integrating spheres, direct T (incl. sphere corrections)	Inverse Adding- Doubling	Beek et al., 1993a
Rabbit	514.5 630					_	2.0-10.0 1.1-12.5	post mortem, in situ	interstitial fiber detectors	Diffusion Theory	Doiron <i>et al.</i> , 1983 Wilson <i>et al.</i> , 1985
	630 632.8		1.4 0.74	110 140	16.5 4.4	0.846 0.968	8.4 15.0	excised <10 min. post sacrifice; used within 12 h; slabs (1 <t<10)< td=""><td>two integrating spheres, direct T (incl. sphere corrections)</td><td>Inverse Adding- Doubling</td><td>Beek et al., 1993a</td></t<10)<>	two integrating spheres, direct T (incl. sphere corrections)	Inverse Adding- Doubling	Beek et al., 1993a
Myocardium							<u>-</u>	·			·
Dog	514		10.1		8.1	_	23.4	<i>post mortem</i> , moist, slab	two integrating spheres (excl. sphere corrections)	Diffusion Theory (∂-Eddington)	Cheong, 1990
	1320		2.3	—	3.5	—	6.3	—— as above ———	as above	— as above —	
	1064 (1) (2)		0.6 0.4	—	4.8 4.5	_	3.1 2.4	—— as above ———	 (1) as above (2) integrating sphere, direct T 	 (1) — as above — (2) Diffusion + KM 	 Cheong, 1990 Splinter <i>et al.</i>, 1991

Tissue	λ (nm)	μ _t cm-1	μ _a cm-1	μ _s cm-1	μ _S (1-g)	g	μeff cm-1	Tissue Preparation and geometry	Experimental method	Theory (Inverse form)	Reference
Myocardium Dog	630 632.8 790		2.0 2.0-2.1 0.98	159 160-191 164	23.0 11.2-11.3 6.0	0.854 0.93-0.944 0.943	12.1 8.9-9.1 3.4	excised <10 min. post sacrifice; used within 12 h; slabs (1 <t<10)< td=""><td>two integrating spheres, direct T (incl. sphere corrections)</td><td>Inverse Adding- Doubling</td><td>Pickering <i>et al.</i>, 1992a, Beek <i>et al.</i>, 1993a</td></t<10)<>	two integrating spheres, direct T (incl. sphere corrections)	Inverse Adding- Doubling	Pickering <i>et al.</i> , 1992a, Beek <i>et al.</i> , 1993a
Human normal scarred epicardium endocardium	1064 1064 1064 1064	 	0.3 0.4 0.35 0.07	178 13.7 167 136	 	0.964 0.975 0.983 0.973	 	post mortem, kept in 3- 5°C saline prior to use, slab	integrating sphere, direct T	Diffusion and 3-flux KM Theories	Splinter <i>et al.</i> , 1989b, 1991
Pig	1064	_	0.44±.05	_	4.3±.3	0.01	—	Fresh, kept on ice 30- 60 min., 2-5mm slabs	2 integrating spheres: R and T	Exact transport solution for isotropic case [Reichmann]	Derbyshire <i>et al.,</i> 1990
Prostate							•				
Canine	355 532 1064	 	9.2 2.4 0.04		47.1 23.8 13.0	 	39.4 13.7 1.25	resected, refridgerat- ed, used within 24 h, slab	photoacoustic transducer to detect shape + peak amplitude of laser-induced pressure wave.	Acoustic Theory	Oraevsky/Jacques19 93
Human	633 612 594 543	9.6 	0.7±2 	 	8.6±.5 — —	0.01	4.3±.5 6.3 9.1 18.2	<i>post mortem</i> , used within 24-48 h, <i>in situ</i> , whole organ	interstitial source and detectors, direct T	Diffusion Theory, Beer's Law	Pantelides <i>et al.</i> , 1990
	1064		1.47±.24	47±13	6.43	0.862	—	<i>post-mortem</i> , native, slab	integrating sphere + baffle corrections; goniophoto-metry	Inverse Monte Carlo [Piet, 1992]	Essenpreis, 1992
Skin											
Human Stratum	193		6000	_	_	_	_	frozen, thawed, slab	direct T	Beer's Law	Watanabe et al., '88
Dermis	630-635	243-246	1.8-1.9	—	—	—		frozen flaps, thawed	integrating sphere (μ_a) ; goniometer: direct T	Beer's Law	Andreola <i>et al.</i> ,'88 Marchesini <i>et al.</i> ,'89
	633	190	2.7	187	35.5	0.81	—	fresh + frozen, 85% hydration, slab	integrating sphere + gonio- photometry	Diffusion Theory; HG fit	Jacques <i>et al.</i> , 1987b
Pig epidermis	632.8 790 850		1.0±0.1 2.4±0.2 1.6±0.1	492±17 409±14 403±20	22.7±0.8 19.3±0.6 14.3±1.5	0.953±.001 0.952±.001 0.962±.005	8.3±0.4 12.3±0.6 8.5±0.6	excised <10 min. post sacrifice; used within 12 h; slabs (1 <t<10)< td=""><td>integrating sphere, direct T (include sphere corrections)</td><td>Inverse Adding- Doubling</td><td>Beek et al., 1993a</td></t<10)<>	integrating sphere, direct T (include sphere corrections)	Inverse Adding- Doubling	Beek et al., 1993a

¹ Scattering isotropy assumed

Tissue	λ (nm)	μ _t cm-1	μ _a cm-1	μ _s cm-1	μ _S (1-g)	g	μeff cm-1	Tissue Preparation and geometry	Experimental method	Theory (Inverse form)	Reference
Skin Pig dermis	632.8 790 850		0.89±0.1 1.8±0.2 0.33±.03	289±7 254±5 285±5	21.1±0.4 13.9±0.3 9.0±0.2	0.926±.002 0.945±.001 0.968±.001	7.1±0.5 8.8±0.6 3.0±0.1	excised <10 min. post sacrifice; used within 12 h; slabs (1 <t<10)< td=""><td>integrating sphere, direct T (include sphere corrections)</td><td>Inverse Adding- Doubling</td><td>Beek <i>et al.</i>, 1993a</td></t<10)<>	integrating sphere, direct T (include sphere corrections)	Inverse Adding- Doubling	Beek <i>et al.</i> , 1993a
Rabbit	630 632.8 790	 	0.94±.13 0.33±.02 0.70±.07	213±21 306±12 321±8	40.0±2.2 31.6±2.2 18.4±0.5	0.812±.017 0.898±.007 0.940±.003	10.7±1.4 5.4±0.2 5.9±0.4	— as above —	——— as above ———	—— as above ——	Beek <i>et al.</i> , 1993a
Rat	355 400 450 500 600 633 650 700 750 810 850 900 950 1000 1064		$\begin{array}{c} 7.3\\ 3.2\\ 1.3\\ 0.48\\ 0.47\\ 0.26\\ 0.22\\ 0.22\\ 0.22\\ 0.22\\ 0.25\\ 0.15\\ 0.19\\ 0.16\\ 0.29\\ 0.39\\ 0.23\\ \end{array}$		120 116 67 45 33 25 23 21 19 17 13 12 11 11 9.8 9.1		53 34 16 8.1 6.9 4.5 3.9 3.7 3.5 3.6 2.4 2.7 2.4 3.1 3.4 2.5	freshly excised, slab	integrating sphere	Inverse Adding- Doubling	Jacques, 1993a
Tumors											
Brain, intra- cranial (Human) ^f	488 514 635 1060		 		 	 	7.1-20.0 7.1-20.0 5.9-3.9 3.3-1.9	freshly resected, <i>in</i> situ, 5-10 cm ³ bulk	interstitial fiber detectors	Diffusion Theory	Svaasand <i>et al.</i> , 1985
Brain (Human)	630	—	—	_	—	—	3.8-8.3	30-60 min. post-resection, <i>in situ</i>	interstitial fiber detectors	Diffusion Theory (spherical geometry)	Svaasand <i>et al.,</i> 1985
Prostate (rat) R3327-AT	633	271	0.49	270.	8.1-5.4	.9798	3.6-2.9	excised, frozen, cut into ~120 μm slabs,	integrating sphere (μ_a)	Diffusion Theory	Arnfield et al., 1988
Sarcoma (rat)	630 514.5	_		_	_		2.3 4.8	<i>post mortem, in situ,</i> bulk	interstitial fiber detectors pointed in x, y, & z directions	Diffusion Theory	Doiron et al., 1982
Fibrosarcoma (rat)	630	_	_	—	_	_	44-9.8	bulk	interstitial fiber detectors	Beer's Law	Driver et al., 1988
Uterus											
Human	635	394	0.35	394		0.69		frozen sections, slab	integrating sphere (μ_a), goniophotometry (μ_t)	Beer's Law	Marchesini <i>et al.,</i> 1989

f intracranial tumors: meningiomas, astrocytomas, glioblastomas

Tissue	λ (nm)	$_{\rm cm-1}^{\mu_t}$	$_{\mathrm{cm}}^{\mu_{\mathbf{a}}}$	μ_{s} cm ⁻¹	$\mu_{\boldsymbol{S}}(1\textbf{-}\boldsymbol{g})$	g	$^{\mu eff}$ cm ⁻¹	Tissue Preparation and geometry	Experimental method	Theory (Inverse form)	Reference
Brain											
Cat	405-410 545 577 631	 	 	 	 	 	44.1 34.4 25.9 5.0-9.8	in situ, intact organ	interstitial fiberoptic detectors	Diffusion Theory	Doiron <i>et al.,</i> '82,'83
Human	630	—	—	_	_	_	4.8-10.0	in situ	interstitial detectors during PDT with embedded inflated balloon light source	Diffusion Theory (spherical solution)	Muller et al., 1986
Pig	630	_	_	_		_	3.7-4.5	in situ	interstitial detectors with surface irradiation (source)	Diffusion Theory	Wilson et al., 1985
Brain tumors	630	_	—	_	_	_	2.2-6.6	in situ	interstitial detectors with interstitial spherical source, post- PDT measurements	Diffusion Theory	Wilson <i>et al.,</i> 1986c; Muller <i>et al.,</i> 1986
Liver											
Pig (inspiration) (expiration)	632.8	_	_	_	_	_	2.5	resected whole organ,	interstitial isotropic detectors	Diffusion Theory	Beek et al., 1993b
Rabbit	630	_	_	_	_	_	3.0 9.0-25.0	in situ in situ	interstitial detectors with surface irradiation (source)	Diffusion Theory	Wilson et al., 1985
Muscle											
Rabbit	630 514	_			_	_	1.6-4.8 4.5-7.7	<i>in situ</i> , intact, ~30-40 mm ³ bulk	interstitial fiberoptic detectors	Diffusion Theory	Wilson <i>et al.</i> , 1985 Doiron <i>et al.</i> , '82,'83
Tumors											- ,
Human retino- blastoma (athymic mice)	488/514 630 668 1064	 	 	 	 	 	6.25 3.03 2.8 1.3	<i>in situ</i> , intact	interstitial spherical tip fiberoptic detectors	Diffusion Theory (spherical solution)	Svaasand <i>et al.,</i> 1989
Mammary car- cinoma (C3H /HEJ mice)	488/514 630 668 1064	 	 	 	 	 	9.1 5.0 4.3 2.7	<i>in situ</i> , intact	as above	as above	as above
B16 melanotic melanoma (C57/B16 mice)	630 668 1064	 	 				20.0 20.0 5.0	in situ, intact	as above	as above	as above

SUMMARY OF OPTICAL PROPERTIES OF TISSUE IN VIVO

Tissue	λ (nm)	μ _t cm-1	μ _a cm-1	μ _s cm-1	μ _S (1-g)	g	^μ eff cm ⁻¹	Tissue Preparation and geometry	Experimental method	Theory (Inverse form)	Reference
Tumors Prostate (rat)											
• R3327-At	630 789		0.97 0.6	_	13.2 6.2	_	_	in situ	interstitial cylindrical diffuser source and flat fiber detectors	Grosjean's model (spherical geometry)	Arnfield <i>et al.</i> , 1992
• R3327-H	630 789		1.53 0.96	_	11.4 7.86	_	_	in situ	as above	as above	— as above —
Breast (human)	630		0.31	_	9.41	_	2.14-3.4	in situ	interstitial cylindrical probes (2 mm long) for source and detectors; correct for back-scatter at probe interface	Diffusion Theory	Driver <i>et al.</i> ,1991

Tissue / Condition	λ (nm)	μt cm-1	μ _a cm-1	μ _s cm-1	μ _s (1- g)	g	µeff	Tissue / sample preparation	Heating method	Measurement method	Theory (Inverse form)	Reference
Aorta	()											
Human: • Normal native coagulated 85°C	308		33 44	_	77 270		104 204	freshly resected, slab	foil-wrapped specimens inside 85°C water bath	integrating sphere; 308 nm selected from spectra collected with optical	Adding-doubling	Oraevsky et al., 1992
 Fibrous plaque native coagulated 85°C 	308		24 34		81 272		87 177			munchanner anaryzer		
Human native coagulated	1064		0.53±.09 0.46±.18	239±45 293±73	23.9 29.3	0.900a 0.900		<i>post mortem</i> , slab	immersed in 70°C water bath for 10 min, tissue sealed in aethylene bag	integrating sphere, goniophotometry for g using 2 μm specimens	Monte Carlo 5[Piet, 1992]	Essenpreis, 1992
Liver									actifytene bag			
Rat native coagulated frozen	1064		1.3±.1 0.8±.1 1.9±.2	63±7 141±11 20±5	8.25 16.2 1.68	0.870 0.885 0.915		freshly excised, slab	immersed in 70°C water bath for 10 min, tissue sealed in aethylene bag	integrating sphere, goniophotometry for g using 2 μm specimens	Monte Carlo 5[Piet, 1992]	Essenpreis, 1992
native coagulated frozen	1320		4.3±.2 3.6±.1 2.9±.2	16±1 88±9 6±2	2.44 22.8 0.60	0.846 0.866 n/a		— as above —	— as above —	—— as above ——	— as above —	– as above –
native coagulated Frozen	2100		21.2±2 22.0±2 21.5±.9	27±11 43±5 13±4	0.542 0.855 0.254	0.800a 0.800 0.800		—— as above ——	— as above —	as above	— as above —	– as above –
Wag/Rij rats native coagulated at 3 heating rates:	1064	_	13±4	204±47	16.3	0.92±.05		Freshly excised, sectioned into 250-540 um slabs, mounted	samples diffusively heated by electrical-ly resistive slides under	two integrating spheres; direct T measurement (incl_sphere corrections)	Adding-Doubling Theory	Pickering et al., 1992c
• 15V(600s)/20V		—	13	184	—	0.917		between special heater	three different	(inclustion of the control of the state of t		
• 25V(contd.) • 30V(contd.) after 960-980 s			11 10.8	175 161		0.912 0.893		511055	rates for 960-980 s			

SUMMARY OF OPTICAL PROPERTIES OF THERMALLY COAGULATED TISSUES IN VITRO

Tissue / Condition	λ (nm)	μ _t cm-1	μ _a cm-1	μ _s cm-1	μ _s (1- g)	g	µef cm-1	Tissue / sample preparation	Heating method	Measurement method	Theory (Inverse form)	Reference
Myocardium	(1111)											
Dog native coagulated	1064 1064		0.43±.2 0.35±.2	173±2 246±2		0.974±.008 0.96±.02		excised, kept at 3-5°C, embedded in highly concentrated gelatin, chilled at 33 °C, cut into 600 µm slabs.	irradiated with 1 cm diameter Nd: YAG beam at 50W, 20-40s	two integrating spheres; direct T measured at 70 cm from sample	3-flux modified Kubelka-Munk (equivalent to Diffusion Model)	Splinter et al., 1991
native (≤ 45°C) coagulated at 45 → 75°C	632.8		2.0±.4 4.2±.2	11.2	160±30	0.93±.02 0.71±.02		freshly excised, ≤75 μm slices held between glass slides.	foil-wrapped slabs slow-heated for 1000s in water bath raised to 37-75°C	two integrating spheres; direct T (incl. sphere corrections)	Adding-doubling	Pickering et al., 1992a
Pig native coagulated	850	5 8						refrigerated 24 h; sliced into ~ 750 μm slabs held between glass slides.	immersed in water bath at 100 °C; T _c and temperature simultaneously monitored.	Infrared LED source with 850 nm peak; single detector recorded T_c	Bouguer's (Beer's) Law	Derbyshire et al., 1990
native coagulated	1064		0.44±.05 0.51±.09		4.3 ±.3 1.7±1			freshly excised, kept on ice for 30-60 min, cut into 2-5 mm slices	whole hearts micro- waved at 450W, 5-10 min, cooled for 30 min. and sliced	two integrating spheres with low level Nd:YAG irradiation delivered thro' fiber, beam divergence unknown	Reichman and Egan's model [*]; isotropy and n=1.33 assumed;	Derbyshire et al. 1990
Prostate												
Human native coagulated	1064		1.5±.2 0.8±.2	47±13 80±12	0.64 1.12	0.862 0.861	_	freshly excised, slab	immersed in 70°C water bath for 10 min, tissue sealed in aethylene bag	integrating sphere, goniophotometry for g using 2 μm specimens	Monte Carlo 5[Piet, 1992]	Essenpreis, 1992

REFERENCES

[Anderson, 1981] R. R. Anderson and J. A. Parrish, "The optics of human skin," J. Invest. Dermatol., vol. 77, pp. 13-19, 1981.

[Andreola, 1988] S. Andreola. A. Bertoni, R. Marehesini, and E. Melloni, "Evaluation of optical characteristics of different human tissues in vitro," Lasers Surg. Med., vol. 8, p. 142 (abstract). 1988.

[Arnfield et al., 1992] M. R. Arnfield, R. P. Mathew, J. Tulip, and M. S. McPhee, "Analysis of tissue optical coefficients using an approximate equation valid for comparable absorption and scattering," Phys. Med. Biol., vol. 37, pp. 1219-1230, 1992.

[Arnfield, 1988] M. R. Arnfield, J. Tulip, and M. S. McPhee, "Optical propagation in tissue with anisotropic scattering," IEEE Trans. Biomed. Eng., vol. 35, pp. 372-381, 1988.

[Atkins, 1969] J. T. Atkins, "Optical properties of tusbid materials," in The Biologic Effects of Ultraviolet Radiation (with Emphasis on the Skin), F. Urbach, Ed. Oxford: Pergamon, 1969, pp. 141-150.

[Beek et al., 1993a] J. Beek, "In vitro optical properties of mammalian tissue at 632.8 nm, 790 nm, 850 nm, and 1064 nm," Las. Surg. Med., 1993 (in preparation).

[Beek et al., 1993b] J. F. Beek, H. J. van Staveren, P. Posthumus, J.J.C.M. Sterenborg, and M.J.C. van Gemert, "The influence of respiration on the optical properties of piglet lung at 632.8 nm," 1993 (in preparation).

[Bell, 1985] G. I. Bell and S. Glasstone, Nuclear Reactor Theory. Malabar, FL: Robert E. Krieger, 1985.

[Bolin, 1987] F. P. Bolin, L. E. Preuss, R. C. Taylor, and T. S. Sandu, "A study of the three-dimensional distribution of light (632.8 nm) in tissue," IEEE J. Quantum. Electron., vol. QE-23, pp. 1734-1738, 1987.

[Brinkworth, 1971] B. J. Brinkworth, "On the theory of reflection by scattering and absorbing media," J. Phys. D: Appl. Phys., vol. 4, pp. 1105-1106, 1971.

[Brinkworth, 1972] B. J. Brinkworth, "Interpretation of the Kubelka-Munk coefficients in reflection theory," Appl. Opt., vol. 11, pp. 1434-1435, 1972.

[Chandrasekhar, 1960] S. Chandrasekhar, Radiative Transfer. New York: Dover, 1960.

[Cheong, 1987] W. F. Cheong, M. Motamedi, and A. J. Welch, "Optical modeling of laser photocoagulation of bladder tissue," Lasers Surg. Med., vol. 7, pp. 72 (abstract), 1987.

[Cheong, 1990] W. F. Cheong, "Photo-thermal processes in tissue irradiated by Nd:YAG laser (1.06 µm, 1.32 µm)," Ph.D. dissertation, Univ. Texas at Austin, Dec. 1990.

[Derbyshire et al., 1990] G.J. Derbyshire, D.K. Bogen, and M. Unger, "Thermally induced optical property changes in myocardium at 1.06 µm," Las. Surg. Med., vol. 10, pp. 28-34, 1990.

[Doiron, 1982] D. R. Doiron, L. O. Svaasand, and A. E. Profio, "Wavelength and dosimetry considerations in photoradiation therapy (PRT)," Proc. SPIE, vol. 357, Lasers in Surgery and Medicine, M. Bern:, Ed., 1982.

[Doiron, 1983] D. R. Doiron, L. O. Svaasand, and A. E. Profio, "Light dosimetry in tissue applications to photoradiation therapy," in Porphyrin Photosensitization, D. Kessel and T. J. Dougherty, Eds. New York: Plenum, 1983, pp. 63-75.

[Driver et al., 1991] I. Driver, C.P. Lowdell, and D.V. Ash, "In vivo measurement of the optical interaction coefficients of human tumors at 630 nm," Phys. Med. Biol, vol. 36, pp. 805-813, 1991.

[Driver, 1988] I. Driver, J. W. Feather, P. R. King, and D. Gibson, "In vivo light dosimetry in interstitial photoradiation therapy (PRT)," Proc. SPIE Int. Soc. of Opt. Eng. OE'Lase 88, M. Berns, Ed., pp. 98-102,1988.

[Eichler, 1977] J. Eichler, J. Knof, and H. Lens, "Measurements on the depth of penetration of light (0.35-1.0 µm) in tissue," Rad. Environ. Biophys., vol. 14, pp. 239-242, 1977.

[Essenpreis, 1992] M. Essenpreis, Thermally induced changes in optical properties of biological tissues. University College London, England, 1992.

[Flock, 1987] S. T. Flock, B. C. Wilson, and M. S. Patterson, "Total attenuation coefficients and scattering phase functions of tissues and phantom materials at 633 nm," Med. Phys., vol. 14, pp. 835-841, 1987.

[Gjislbers, 1985] G. H. M. Gjislbers, M.S. thesis, Eindhoven Univ., Eindhoven, The Netherlands, 1985.

[Houf, 1980] W. G. Houf and F. P. Incorpera, "An assessment of techniques for predicting radiation transfer in aqueous media," J. Quantum Spec. Rad. Trans., vol. 23, pp. 101-115, 1980.

[Ishimaru, 1978] A. Ishimaru. Wave Propagation and Scattering in Random Media, Volume I. New York: Academic, 1978.

[Jackson, 1988] H. Key, P. C. Jackson, and P. N. T. Wells, "Light scattering and propagation in tissue," Poster Presentation, World Cong. Med. Phys., Bioeng., San Antonio, TX, Aug. 1988.

[Jacques, 1987a] S. L. Jacques and S. A. Prahl, "Modeling optical and thermal distributions in tissue during laser irradiation," Lasers Surg. Med., vol. 6, pp. 494-503, 1987.

[Jacques, 1987b] S. L. Jacques, C. A. Alter, and S. A. Prahl, "Angular dependence of HeNe laser light scattering by human dermis," lasers Life Sci., vol. 1, pp. 309-333, 1987.

[Jacques, 1993a] S.L. Jacques, personal communication, 1993.

[Jacques, 1993b] S.L. Jacques, personal communication, 1993. The optical properties were extracted from the data published in: N.S. Nishioka, S.L. Jacques, J.M. Richter, R.R. Anderson, "Reflection and transmission of laser light from the esophagus: the influence of incident angle," Gastroenterology, vol. 94, pp. 1180-1185, 1988.

[Joseph, 1976] J. H. Joseph, W. J. Wiscombe, and J. A. Weinman, "The delta-Eddington approximation for radiative flux transfer," J. Atmos. Sci., vol. 33, pp. 2452-2459, 1976.

[Karagiannes, 1989]] J. L. Karagiannes, Z. Zhang, B. Grossweiner, and L. I. Grossweiner, "Applications of the l-D diffusion approximation to the optics of tissues and tissue phantoms," Appl. Opt., vol. 28, pp. 2311-2317, 1989.

[Keijzer, 1989] M. Keijzer, R. R. Richards-Kortum, S. L. Jacques, and M. S. Feld, "Fluorescence spectroscopy of turbid media: autofluorescence of the human aorta," Appl. Opt., vol. 28, pp. 4286-4292, 1989.

[Keijzer, 1989] M. Keijzer, S. L. Jacques, S. A. Prahl, and A. J. Welch, "Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams," Lasers Surg. Med., vol. 9, pp. 148-154,1989.

[Klier, 1972] K. Klier, "Absorption and scattering in plane parallel turbid media," J. Opt. Soc. Amer., vol. 62, pp. 882-885. 1972.

[Kottler, 1960] F. Kottler, "Turbid media with plane-parallel surfaces," J. Opt, Soc. Amer., vol. 50, pp. 483-490, 1960.

[Kubelka, 1948] P. Kubelka, "New contributions to the optics of intensely light-scattering materials. Part 1," J. Opt. Soc. Amer., vol. 38, pp. 448-457, 1948.

[Kubelka, 1954] P. Kubelka, "New contributions to the optics of intensely light-scattering materials. Part II: Nonhomogeneous layers," J. Opt. Soc. Amer., vol. 44, pp. 330-335, 1954.

[Long, 1987] F. H. Long, N. S. Nishioka, and T. F. Deustch, "Measurement of the optical and thermal properties of biliary calculi using pulsed photothermal radiometry," lasers Surg. Med., vol. 7, pp. 461-466,1987.

[MacLeod, 1988] J. S. MacLeod, D. Blanc, and M. J. Colles, "Measurement of the optical absorption coefficients at 1.06 µm of various tissues using the photoacoustic effect," Lasers Surg. Med., vol. 8, p. 143 (abstract),1988.

[Marchesini, 1989] R. Marchesini, A. Bertoni, S. Andreola, E. Melloni, and A. E. Sichirollo, "Extinction and absorption coefficients and scattering phase functions of human tissues in vitro," Appl. Opt., vol. 28, pp. 2318-2324, 1989.

[Marijnissen, 1984] J. P. A. Marijnissen and W. M. Star, "Phantom measurements for light dosimetry using isotropic and small aperture detectors," in Porphyrin Localization and Treatment of Tumors, D. R. Doiron and C.J. Gomer, Eds. New York: Alan R. Liss, pp. 133-148, 1984.

[Marijnissen, 1985] J. P. A. Marijnissen, W. M. Star, J. L. van Delft, and N. A. P. Franken, "Light intensity measurements in optical phantoms and in vivo during HpD photoradiation treatment using a miniature light detector with isotropic response," in Photodynamic Therapy of Tumors and Other Diseases, G. Jori and C. Perria, Ed:. Padova, Italy: Libretia Progetto, 1985, pp. 387-390.

[Marijnissen, 1987] P. A. Marijnissen and W. M. Star, "Quantitative light dosimetry in vitro and in vivo," Lasers Med. Sci., vol. 2, pp. 235-242, 1987.

[McKenzie, 1988] A.L. McKenzie and P. O. Byme, "Can photography be used to measure isodose distribution of space irradiance for laser photoradiation therapy?" Phys. Med. Biol., vol. 33, pp. 113-131, 1988.

[Meador, 1979] W. E. Meador and W. R. Weaver, "Diffusion approximation for large absorption in radiative transfer," Appl. Opt., vol. 18, pp. 1204-1208, 1979.

[Mie, 1908] G. Mie, "Pioneering mathematical description of scattering by spheres," Ann. Phys., vol. 25, p. 337, 1908.

[Mudgett, 1971] P. S. Mudgett and L. W. Richards, "Multiple scattering calculations for technology," Appl. Opt., vol. 10, pp. 1485-1502, 1971.

[Muller, 1986] P.J. Muller and B. C. Wilson, "An update on the penetration depth of 630 nm light in normal and malignant human brain tissue in vivo," Phys. Med. Biol., vol. 31, pp. 1295-1297, 1986.

[Oraevsky et al., 1992] A.A. Oraevsky, S.L. Jacques, G.H. Pettit, I.S. Saidi, F.K. Tittel, "XeCl laser ablation of atherosclerotic aorta: optical properties and energy pathways," Las. Surg. Med., vol. 12, pp. 585-597, 1992.

[Oraevsky, 1988] A. A. Oraevsky, V. S. Letokhov, S. E. Ragimov, V. G.Omel'Yanenko, A. A. Belyaev, B. V. Shekhonin, and R. S. Akchurin, "Spectral properties of human atherosclerotic blood vessel walls," lasers life Sci., vol. 2, pp. 275-288, 1988.

[Oraevsky/Jacques, 1993] A.A. Oraevsky, and S.L. Jacques, personal communication, 1993.

[Pantelides et al., 1990]M.L. Pantelides, C. Whitehurst, J.V. Moore, T.A. King, and N.J. Blacklock, "Photodynamic therapy for localized prostatic cancer: light penetration in the human prostate gland," J. Urol., vol. 143, pp. 398-401, 1990.

[Parsa, 1989] P. Parsa, S. L. Jacques, and N. S. Nishioka, "Optical properties of rat liver between 350 and 2200 nm," Appl. Opt., vol. 28, pp. 2325-2330, 1989.

[Patterson, 1989] M. S. Patterson, B. Chance, and B. C. Wilson, "Time resolved reflectance and transmittance for the non-invasive measurement of tissue optical properties," Appl. Opt., vol. 28, pp. 2331-2336, 1989.

[Pedersen, 1976] G. D. Pedersen, N. J. McCormick, and L. O. Reynolds, "Transport calculations for light scattering in blood," Biophys. J., vol. 16, pp.199-207, 1976.

[Pickering et al., 1992a] J.W. Pickering, S. Bosman, P. Posthumus, P. Blokland, J.F. Beek, and M.J.C., van Germert, "Changes in the optical properties (at 632.8 nm) of slowly heated myocardium," Las. Surg. Med., 1992.

[Pickering et al., 1992b] J.W. Pickering, C.J.M. Moes, H.J.C.M. Sterenborg, S.A. Prahl, and M.J.C. van Gemert, "Two integrating spheres with an intervening scattering sample," J. Opt. Soc. Amer. A, vol. 9, pp. 621-631, 1992.

[Pickering et al., 1992c] J.W. Pickering, P. Posthumus, and M.J.C. van Gemert, "Continuous measurement of the heat induced changes in the optical properties (at 106.4 nm) of rat liver," submitted, 1992.

[Plass, 1973] G. N. Plass, G. W. Kattawar, and F. E. Catchings, "Matrix operator theory of radiative transfer. 1: Rayleigh scattering," Appl. Opt., vol. 12, pp. 314-329, 1973.

[Prahl, 1988] S. A. Prahl, "Light transport in tissue," Ph.D. dissertation, Univ. Texas at Austin. 1988.

[Prahl, 1988] S. A. Prahl, A. J. Welch, M. P. Sartori, P. D. Henry, R. Roberts, G. L. Valderrama, K. Y. Jong, and M. J. Berry, "Optical properties of normal human aorta from 200 to 2200 nanometers," lasers Surg. Med., vol. 8, p. 142 (abstract), 1988.

[Prahl, 1990] S. A. Prahl, J. W. Valvano, M. J. C. van Gemert, and A. J. Welch, "Boundary conditions and phase functions in the diffusion approximation of the radiative transport equation," Appl. Opt., 1990 (submitted).

[Preuss, 1982] L. E. Preuss, F. P. Bolin, and B. W. Cain, "Tissue 55a medium for laser light transport—Implications for photoradiation therapy," Proc, SPIE, vol. 357, Lasers in Surgery and Medicine, M. Berns, Ed., pp. 77-84, 1982.

[Preuss, 1987] L. E. Preuss and F. P. Bolin, "Letter to the editor," Lasers Life Sci., vol. 1, pp. 335-336, 1987.

[Profio, 1987] A. E. Profio and D. R. Doiron, "Transport of light in tissue in photodynamic therapy," Photochem. Photobiol., vol. 46, pp. 591-599, 1987.

[Reynolds, 1976] L. O. Reynolds, C. C. Johnson, and A. Ishimaru, "Diffuse reflectance from a finite blood medium: Applications to the modeling of fiber optic catheters," Appl. Opt., vol. 15, pp. 2059-2067, 1976.

[Reynolds, 1980] L. O. Reynolds and N. J. McCormick, "Approximate two-parameter phase function for light scattering," J. Opt. Soc. Amer., vol. 70, pp. 1206-1212, 1980.

[Schwartz et al., 1993] J.A. Schwartz, S.L. Jacques, and C.T. Vangsness Jr., "Optical properties of human meniscus," in 13th Ann. Mtg. of the Amer. Soc. of Las. Med. Surg., April, 1993. New Orleans.

[Shettle, 1970] E. P. Shettle and J. A. Weinman, "The transfer of solar irradiance through inhomogeneous turbid atmospheres evaluated by Eddington's approximation," J. Atmos. Sci., vol. 27, pp. 1048-1055, 1970.

[Splinter et al., 1991] R. Splinter, R.H. Svensen, L. Littman, J.R. Tuntelder, C.H. Chuang, G.P. Tatsis, and M. Thompson, "Optical properties of normal, diseased, and laser photocoagulation myocardium at the Nd:YAG wavelength," Las. Surg. Med., vol. 11, pp. 117-124, 1991.

[Splinter, 1989a] R. Splinter, Poster Presentation, Future Directions lasers in Surg., Med., Eng. Foundat. Florida, Feb. 1989.

[Splinter, 1989b] R. Splinter, W. F. Cheong, M. J. C. van Gemert, and A. J. Welch, "In vitro optical properties of human and canine brain and urinary bladder tissues at 633 nm," Lasers Surg. Med., vol. 9, pp. 37-41, 1989.

[Star, 1987a] W. M. Star, J. P. A. Marijnissen, and M. J. C. van Gemert, "Light dosimetry: Status and prospects," J. Photochem. Photobiol. B: Biology, vol. 1, pp. 149-167, 1987.

[Star, 1987b] W. M. Star, J. P. A. Marijnissen, H. Jansen, M. Keijzer, and M. J. C. van Gemert, "Light dosimetry for photodynamic therapy by whole bladder wall irradiation," Photochem. Photobiol., vol. 46, pp. 619-624, 1987.

[Star, 1988] W. M. Star, J. P. A. Marijnissen, and M. J. C. van Gemert, "Light dosimetry in optical phantoms and in tissues: 1. Multiple flux and transport theory," Phys. Med. Biol., vol. 33, pp. 437-454, 1988.

[Star, 1989] W. M. Star, "Comparing the P3-approximation with diffusion theory and with Monte Carlo calculations of light propagation in a slab geometry," Proc. SPIE, vol. 155. Dosimetry of Laser Radiation in Medicine and Biology. G. J. Muller and D. H. Sliney, Eds., pp. 146-154, 1989.

[Steinke, 1988] J. M. Steinke and A. P. Shepherd, "Diffusion model of the optical absorbance of whole blood,", J. Opt. Soc. Amer., vol. 5, pp. 813-822, 1988.

[Sterenborg, 1989] H. J. C. M. Sterenborg, M. J. C. van Gemert, W. Kamphorst, J. G Wolbers, and W. Hogervorst, "The spectral dependence of the optical properties of the human brain," Lasers Med. Sci., vol. 4, pp. 221-227, 1989.

[Svaas, 1989] L. O. Svaas and, C. J. Gomer, and A. E. Profio, "Laser-induced hyperthermia of ocular tumors," Appl. Opt., vol. 28, pp. 2280-2287, 1989.

[Svaasand et al., 1989] L. O. Svaasand, C.J. Gomer, and A.E. Profio, "Laser-induced hyperthermia of ocular tumors," Appl. Opt., vol. 28, pp. 2280-2287, 1989.

[Svaasand, 1981] L. O. Svaasand, D. R. Doiron, and A. E. Profio, "Light distribution in tissue during photoradiation therapy," USC Instit. Phys. Imaging Sci., USC-IPIS 900-02, 1981.

[Svaasand, 1983] L. O. Svaasand and R. Ellingsen, "Optical properties of human brain," Photochem. Photobiol., vol. 38, pp. 293-299, 1983.

[Svaasand, 1985] L. O. Svaasand and R. Ellingsen, "Optical penetration in human intracranial tumors," Photochem. Photobiol., vol. 41, pp. 73-76,1985.

[van de Hulst, 1962] H. C. van de Hulst, A New Look at Multiple Scattering. New York: NASA Instit. Space Studies, 1962.

[van de Hulst, 1980a] H. C. van de Hulst, Multiple Light Scattering. Volume 2. New York: Academic, 1980.

[van de Hulst, 1980b] H. C. van de Hulst, Multiple Light Scattering, Volume I. New York: Academic, 1980.

[van Gemert, 1985] M. J. C. van Gemert, R. Verdaasdonk, E. G. Stassen, G. A. C. M. Schets, G. H. M. Gijsbers, and J. J. Bonnier, "Optical properties of human blood vessel wall and plaque," Lasers Surg. Med., vol. 5, pp.235-237, 1985.

[van Gemert, 1985] N.J. C. van Gemert, M. C. Berenbaum, and G. H. M. Gijsbers, "Wavelength and light-dose dependence in tumor phototherapy with hematoporphyrin-derivative," Brit. J. Cancer, vol. 52, pp. 43-49, 1985.

[van Gemert, 1986] M. J. C. van Gemert, A. J. Welch, and A. P. Amin, "Is there an optimal laser treatment for portwine stains?" Lasers Surg. Med., vol. 6, pp. 76-83, 1986.

[van Gemert, 1987] M. J. C. van Gemert and W. M. Star, "Relations between the Kubelka-Munk and the transport equation models for anisotropic scattering," Lasers Life Sci., vol. 1, pp. 287-298, 1987.

[van Gemert, 1987] M. J. C. van Gemert, A. J. Welch, W. M. Star, M. Motamedi, and W. F. Cheong, "Tissue optics for a slab geometry in the diffusion approximation," Lasers Med. Sci., vol. 2, pp. 295-302, 1987.

[van Hillergersberg et al, 1993] R. van Hillergersberg, J.W. Pickering, M. Aalders, and J.F. Beek, "Optical properties of rate liver and tumor at 633 nm and 1064 nm: Photofrin enhances scattering," Las. Surg. Med., 1992 (submitted).

[Wan, 1981] S. Wan, R. R. Anderson, and J. A. Parrish, "Analytical modeling for the optical properties of the skin with in vitro and in vivo applications," Photochem. Photobiol., vol. 34, pp. 493-499, 1981.

[Watanabe, 1988] S. Watanabe, T. J. Flotte, D. J. McAuliffe, and S. L. Jacques, "Putative photoacoustic damage in skin induced by pulsed ArF excimer laser," J. Invest. Derm., vol. 90, pp. 761-766, 1988.

[Wilksch, 1984] P. A. Wilksch, F. Jacka, and A. J. Blake, "Studies of light propagation in tissue," in Porphyrin Localization and Treatment of Tumors, D. R. Doiron and C. J. Gomer, Eds. New York: Alan R. Liss, 1984, pp. 149-161.

[Wilson, 1983] B. C. Wilson and G. Adam, "A Monte Carlo model for the absorption and flux distributions of light in tissue," Med. Phys., vol. 10, pp. 824-830, 1983.

[Wilson, 1985] B. C. Wilson, W. P. Jeeves, and D. M. Lowe, "In vivo and postmortem measurements of the attenuation spectra of light in mammalian tissues," Photochem. Photobiol., vol. 42, pp. 153-162, 1985.

[Wilson, 1986a] B. C. Wilson, M. S. Patterson, and D. M. Burns, "Effect of photosensitiser concentration in tissue on the penetration depth of photoactivating light," Lasers Med. Sci., vol. 1, pp. 235-244, 1986.

[Wilson, 1986b] B. C. Wilson and M. S. Patterson, "The physics of photodynamic therapy," Phys. Med. Biol., vol. 31, pp. 327-360, Apr. 1986.

[Wilson, 1986c] B. C. Wilson, P.J. Muller, and J. C. Yanche, "Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumors," Phys. Med. Biol., vol. 31, pp. 125-133, 1986.

[Wilson, 1987] B. C. Wilson, M. S. Patterson, and S. T. Flock, "Indirect versus direct techniques for the measurement of the optical properties of tissues," Photochem. Photobiol., vol. 46, pp. 601-608, 1987.

[Yoon, 1988] G. Yoon, "Absorption and scattering of laser light in biological media—Mathematical modeling and methods for determining optical properties." Ph.D. dissertation, Univ. Texas at Austin, 1988.

[Yoon, 1989] G. Yoon, S. A. Prahl, and A. J. Welch, "Accuracies of the diffusion approximation and its similarity relations for laser irradiated biological media," Appl. Opt., vol. 28, pp. 2250-2255, 1989.