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Light Distributions in Artery Tissue:
Monte Carlo Simulations for
Finite-Diameter Laser Beams
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Finite-width light distributions in arterial tissue during Argon
laser irradiation (476 nm) are simulated using the Monte Carlo
method. Edge effects caused by radial diffusion of the light ex-
tend +=1.5 mm inward from the perimeter of a uniform incident
beam. For beam diameters exceeding 3 mm the light distribution
along the central axis can be described by the one-dimensional
solution for an infinitely wide beam. The overlapping edge effects
for beam diameters smaller than 3 mm reduce the penetration of
the irradiance in the tissue. The beam profile influences the light
distribution significantly. The fluence rates near the surface for a
Gaussian beam are two times higher on the central axis and de-
crease faster radially than for a flat profile. The diverging light
from a fiber penetrates tissue in a manner similar to collimated

light.
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INTRODUCTION

When using laser light in medical treat-
ments, the rates of photochemical and thermal
reactions depend on the light dose in the tissue.
The distribution of the light within the tissue
must be estimated from the irradiance delivered
at the surface. To predict the internal light dose
in turbid tissue an understanding of radiative
transport in scattering media is required.

The most commonly used description of light
propagation in highly scattering media is the
equation of transfer [1]. This equation has only
been solved for a one-dimensional geometry. Two-
and three-dimensional solutions require a serious
restriction of the angular distribution of the scat-
tered light [2]. Examples of approximations that
provide three-dimensional light distributions are
the diffusion approximation [3,4] and the seven-
flux model [5].

When treating the highly forward-directed
light scattering characteristic of tissues [6,7], the
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validity of the diffusion approximation i1s suspect
[8]. The transition from a collimated laser beam,
incident at the surface, to a diffuse flux, deeper in
the tissue, occurs in the first several hundred mi-
crons of tissue. This is the region that is most
important for many laser/tissue interactions yet
where the light distributions are the least accu-
rately described by diffusion theory [9].

An alternative to solving the equation of
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TABLE 1. Optical Parameters, Artery Media, 476 nm

L, = 6/cm Absorption coefficient

w, = 414/cm Scattering coefficient

e = 420/cm Total attenuation coefficient, w, +
g = 091 Mean cosine of the scattering angle
n = 1.37 Index of refraction

transfer is to simulate light propagation in a scat-
tering medium with the Monte Carlo method [10—
12]. Each photon out of a large sample is followed
on its random walk until it is absorbed. The total
light distribution is estimated from the resulting
distribution of absorbed photons. With the Monte
Carlo method, light transport can be calculated
without approximating the tissue geometry or the
angular distribution of light. The exact scattering
properties can be simulated as well as the inter-
nal reflection at mismatched boundaries.

This paper presents a Monte Carlo simula-
tion for the light distribution in human aorta 1r-
radiated with argon laser light (476 nm). The op-
tical properties of normal human aorta at other
wavelengths will be published elsewhere [13].
The effect of the beam diameter on the internal
light distribution is discussed. The light distribu-
tions associated with a uniform beam, a (Gaussian
beam, and the slightly diverging light from an
optical fiber are compared.

MATERIALS AND METHODS
Optical Parameters

The optical parameters used are those of the
media of normal human aorta at 476 nm. The
absorption coefficient, p,, the scattering coetfi-
cient, w., and the mean cosine of the scattering
angle, g, are listed in Table 1. The total attenua-
tion coefficient, p., is defined as the sum of p, and
ws. The sample is 1.5 mm thick and is surrounded
by air. The index of refraction of the sample 1s
assumed to be 1.37 [7].

The optical parameters were obtained exper-
imentally from one sample using the method of
Jacques and Prahl [7], modified to include the
delta-Eddington approximation of the scattering
function [14]. The total attenuation coefficient, .,
was obtained by measuring on-axis transmission
through thin sections of media (10—-50 pwm). Inte-
grating sphere measurements of the total trans-
mission and total reflection of the full-thickness
sample yielded the remaining optical parameters.
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Monte Carlo Method

In the Monte Carlo program, photons are
multiply scattered as they propagate through the
tissue until they are absorbed. Photons enter the
tissue at a single point on the surface. The initial
direction of the photons is sampled from the an-
gular distribution of the incident beam. The ad-
vantage of having the photons entering through a
single point is that the result constitutes a spatial
impulse response, which can be convolved over
any profile of the incident beam, thus eliminating
the need for many lengthy Monte Carlo simula-
tions.

The path of a photon 1n a scattering medium
consists of steps of varying length between inter-
action sites and angles of deflection for scattering
events. Every step length and scattering angle is
sampled from its respective distribution (see
below). To reduce the number of photons needed
to estimate the actual light distribution, weighted
photons are used. At each interaction site, w./p; of
the weight of the photon is deposited as absorbed
energy, after which the photon is scattered into a
new direction. When the weight of the photon has
been reduced to 1/20,000th of its initial weight,
the photon is “killed,” and a new one is launched.
(Instead of one photon losing weight to absorption
along its path, the process can be thought of as a
bundle of photons leaving a trail of absorbed pho-
tons behind.) When the photon hits the tissue/air
boundary, part of the photon’s weight is transmit-
ted into the air according to Fresnel’s laws for
unpolarized light. The remaining weight is inter-
nally reflected and continues its random walk.
The results presented are obtained by launching
20,000 photons.

Below, the random walk of the photons 1s
described in more detail.

Sampling random variables. The princi-
ple of the Monte Carlo method is well described by
Cashwell and Everett [15]. To determine the ran-
dom walk of a photon, certain random variables,
such as the path length between two scattering
events or the scattering angle, must be assigned
values at every interaction site. The values of the
variable are chosen randomly from the distribu-
tion of the variable in the following way.

Define p(x) as the probability density func-
tion of a random variable x (a=x=b), where

f; p(x)dx = 1.

Then the sample, x,,4, of the random variable x 1s

(1)
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surface
of media

direction
of photon

Fig. 1. Coordinates for random walk. O<r, 0=U=2m,

O=z=sample thickness, 0=¢p=m, 0<{=2m7.

simulated by choosing a random number, RND,
from a uniform distribution 0=RND=1 and re-
quiring

RND = f " o(x) dx. 2)

Equation 2 is applied to a particular random vari-
able, x, and rearranged, yielding x.,q as a func-
tion of RND.

Coordinates. The coordinate system for the
Monte Carlo simulation is shown in Figure 1. The
position of the photons, r, is described in cylindri-
cal coordinates, (r, ¥, z) (O=r, 0=9=mm,
0<z=medium thickness), and the direction of the
photons is described in spherical coordinates,
(@, ) (O=¢=m, 0=¢=27).

The photons migrate in three dimensions.
However, we consider cylindrically symmetric ge-
ometries, and therefore the v-dependence of the
absorption can be ignored. The tissue is divided
into a two-dimensional array in r and z, which
specifies element volumes in which the absorbed
weights of the propagating photons are recorded.
These element volumes are logarithmically
scaled: small near the source and large far from
the source.

Random walk. Every generated path
length between interaction sites, L (L=0), 1s cal-
culated from a random number, RND, as de-

scribed above. The probability density function,
p(L), of the path length is

pl) = p, e ™Mb (3)
where p(L) satisfies the normalization of equation

1. Substitution of equation 3 into equation 2

yields an expression for the path length sample,
Lrnd:

L —

rnd

—¢n(1-RND)/p,. (4)

In this way L, 4 is selected by RND, which is gen-
erated by a random number generator.

The photon is displaced from the old position,
(r, ¥, z), over distance L (which is sampled by
L,nq), In direction (¢, ). The coordinates of the
new position, (r', 9, z'), are

r' = (r* + 2rLsingcos(y—3) + (Lsing)?)'?

v + asin(Lsinesin(—9)/r’,
8 — for Lsing cos(wm—y+U)=r
U + 7w + asin(Lsinesin(y—39)/r’,
for Lsingcos(m—y+9)>r

z' = z + Lcose. (5)

At the new position, p, /i of the weight of
the photon is deposited in an element of the ab-
sorption array. The photon is then scattered with
e/l of 1ts former weight. We assume that the
angle of deflection has a Henyey-Greenstein dis-
tribution [16], which, as Jacques et al [17] have
demonstrated, well describes the light scattering
In tissues:

372

pley) = 5 (1—g%)/(1+g°—2 g coses

p(djq) =

1
2
1
2

; (6)

where ¢, is the polar scattering angle (0=¢ <),
and Wy, 1s the azimuthal scattering angle
(0=yi,=2m). Probability density functions p(e;)
and p(\;) satisfy equation 1. Substitution of equa-
tions 6 1nto equation 2 yields relations to obtain
the scattering angle samples (®; 14, Vs vnd):

- 1 ) 1_g2 2
Psrnd = ACOS E[“g ~\1—-g + 2¢gRND ]

s rnd = 2mRND. (7)
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The deflection angle, (¢, ), is specified by
the samples ¢ ng and Yg rng. From the old direc-
tion, (¢, §), the photon is scattered over angle (s,
J,) into direction (¢’, ') according to the follow-
ing relations [10]:

!

¢ = acos(cosgy cose —sing, Sing cosys,)

Y + atan(sing, sin{i /o), for >0

y + atan(singg siny/a) = 7,  for a<<0,

where a = cos@ssind + sind, cos, cose. (8)

If a photon strikes the surface, part of its
weight 1s transmitted into the air according to
Snell’s law and Fresnel’s equations for unpolar-
ized light. The amount transmitted through the
surface is added to the total reflection or total
transmission. The remaining fraction of the pho-
ton is internally reflected and continues its ran-
dom walk.

Spatial Impulse Response. The method
yields the rate of energy deposition, Q(r), in W/cc
per unit of incident power (in W), that enters the
sample through a single point on the surface. In
other words, Q(r) has unit 1/cc. The corresponding
fluence rate distribution, the spatial impulse re-
sponse, G(r), is coupled to the rate of energy dep-
osition, Q(r), by the absorption coefficient, ,:

Q(r) = py G(r). (9)

Therefore, the unit of the spatial impulse re-
sponse in the tissue, G(r), is 1/cm?, which allows
the spatial impulse response to be convolved
against an incident beam (see equation 10). This
convolution yields W(r), the total fluence rate, in
W/em?.

Two spatial impulse responses are used: one
for collimated light incident perpendicularly to

a.

Fig. 3. Monte Carlo simulations of the propagation of pho-
tons in human aorta (30 photons shown). The internal light
distribution is influenced by the scattering function. a:

15 mm—»

10000
1000".

Fig. 2. Spatial impulse response, G(r) in cm 2, light distri-
bution induced by a collimated ray through a point on the
surface of tissue with parameters of Table 1. The light pene-
trates to form a narrow cylinder, then rapidly diffuses into a
hemispherical pattern.

the surface and one for divergent light from a fi-
ber with a numerical aperture of 0.26. The spatial
impulse response, G(r), for human aorta irradi-
ated by a collimated 476-nm ray is given in Fig-
ure 2. The fluence rate directly under the beam is
orders of magnitude higher than next to it. How-
ever, because of the large differences in volumes,
the total amount of light scattered away from the
central axis i1s far greater than the collimated
light on axis.

Finite beam convolution. The light dis-
tribution in the tissue, ¥(r), caused by a beam
with an arbitrary irradiance profile, E(r,9) in
W/em?, is obtained by convolving the spatial im-
pulse response, G(r), with the source:

Y(r,v,z) =

2n A%

[ Ew.8) GOV + 17 = 2rcosd—97),2) r'dr'dd’.
(10)

E(r,9) is constant over the beam area for a flat
beam profile. E(r,4) 1is proportional to
exp(—2(r/R;)*) for a Gaussian beam with a 1/e®
radius R;.

b.

Henyey-Greenstein function, where g = 0.91, u, = 414/cm. b:
Isotropic scattering function where the similarity relation is
conserved: g = 0, u, = 37.3/cm.
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RESULTS
Influence of the Scattering Function

The paths of 30 photons, generated by the
Monte Carlo program, are projected on the ¢ =0
plane in Figure 3. For reasons of clarity, the pho-
tons in Figure 3 are multiply scattered without
losing weight until a single absorption event ter-
minates propagation.

The consequences of changing the optical
scattering parameters can directly be visualized
with the Monte Carlo method. In Figure 3a, the
photons are scattered according to the Henyey-
Greenstein function (equations 6). In Figure 3b,
the scattering function in tissue is approximated
by an isotropic function (g = 0), according to the
similarity relation. The similarity relation as-
serts that the penetration of light through a scat-
tering media will remain constant, if the “reduced
scattering coefficient,” ps(1—g), is conserved [18,
Chapter 14]. Therefore the scattering coefficient
for the isotropic function in Figure 3b is chosen:
s = ms(1—g). The scattering angles in Figure 3b
are much bigger, but more importantly, the whole
pattern is wider. For a finite-diameter incident
beam this pattern will result in a light distribu-
tion that is lower directly under the beam but
spread out wider compared to the light distribu-
tion calculated with an anisotropic scattering
function, as in Figure 3a.

Therefore, the details of the scattering func-
tion do influence the light distributions of beams
of finite diameter. The Monte Carlo technique en-
ables the Henyey-Greenstein function to be used,
rather than an approximation.

Effect of the Beam Diameter

Light distributions in arterial tissue in air
for three diameters (200 pm, 1 mm, and 4 mm) of
a uniform incident beam are shown in Figure 4.
The incident irradiance in each figure is 1 W/cm?.
Back-scattered light augments the incident beam,
yielding an internal fluence rate that exceeds the
irradiance delivered at the surface. Directly un-
der the incident beam, the light is still rather for-
ward directed, as shown by the large radial gra-
dient in fluence rate at the edge of the beam.
Farther away from the source, the light is more
diffuse.

Radial diffusion creates edge effects that ex-
tend =£1.5 mm from the perimeter of the incident
beam inward. The light distribution associated
with the 4 mm-wide beam (Fig. 4c¢) has a central
cylinder of 1 mm diameter that is unaffected by
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Fig. 4. Distributions of 476 nm light in human aorta for flat,
collimated incident beams with different diameters (a: 200
um; b: 1 mm; ¢: 4 mm). The power density of the incident
beam is 1 W/em?. As shown in c, the edge effects extend =1.5
mm from the perimeter of the beam inward, leaving a central
cylinder of 1 mm diameter with a one-dimensional light dis-
tribution. The edge effects overlap in the center for beam
diameters smaller than 3 mm, which decreases the penetra-
tion of light (a,b).

the edge effects. Within this central cylinder, the
fluence rates are the same as for an infinitely
wide flat beam. When the incident beam 1s nar-
rower than 3 mm, the edge effects overlap, de-
creasing the fluence rates in the center (Fig.
4a.b).

The maximum fluence rate is obtained on
axis, below the surface. The depth of the
maximum depends on the diameter of the inci-
dent beam. The maximum fluence rate for beam
diameters over 3 mm is obtained at a depth of
about 35 wm (Fig. 4c). As the beam diameter is
decreased, the maximum moves toward the sur-
face (Fig. 4a,b).

The magnitude of the maximum fluence rate
also depends on the beam diameter. The maxi-
mum fluence rate for the 4 mm beam is almost 2.5
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Maximum fluence rate
in tissue [ W/cm? ]

0 1 2 3 4
Beam diameter [mm]

Fig. 5. Maximum fluence rate in the tissue as a function of
the beam diameter. As the beam diameter decreases, the edge
effects caused by scattering overlap, yielding lower fluence
rates within the tissue. The position of the maximum is about
35 wm under the surface for beam diameters over 3 mm and
moves toward the surface for decreasing diameters (476 nm, 1
W/cm? collimated beam with a flat profile, incident on human
aorta).

W/cm? (Fig. 4c). The maximum value for the 1
mm beam is 2 W/em? (Fig. 4b) and for the 200 um
beam is 1.2 W/em? (Fig. 4a). The magnitude of the
maximum fluence rate depends on the beam di-
ameter, as summarized in Figure 5. The maxi-
mum for the limit of a 0-diameter beam has the
same magnitude as the incident irradiance, i.e., 1
W/em?.

The sample is surrounded by air. Internal
reflection, caused by mismatched boundaries, in-
creases the fluence rate near the surface almost
to the subsurface maximum. However, for a sam-
ple of aorta submerged in water the fluence rate
at the surface is about 20% lower than the sub-
surface maximum for broad beams.

Gaussian Beam

In Figure 4 the beam profile is flat. The light
distribution induced by a beam with a Gaussian
profile, with a 1/e? diameter of 1 mm, is shown in
Figure 6. The total beam power is 7.85 mW, which
matches the power of the 1 mm flat beam in Fig-
ure 4b. The whole pattern for the Gaussian profile
is rounder than the one for the flat profile. The
maximum lays nearer to the surface and is less
wide. The maximum fluence rate is 4 W/cm?,
twice as high as the one for a flat profile. The
profile of the incident beam strongly influences
the radial light distribution in the tissue.
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Fig. 6. Distribution of 476 nm light in human aorta for a
collimated beam of 7.85 mW with a Gaussian profile (1/e?
diameter of 1 mm). Compare this distribution to the distribu-
tion associated with a flat profile as in Figure 4b.

Optical Fiber

Another means of delivery is an optical fiber.
Instead of being perfectly collimated, the light
coming out of a fiber has an angular distribution.
The light distribution in the tissue calculated for
a 200 pm diameter fiber with NA = 0.26, posi-
tioned just above the surface of the tissue, is
shown in Figure 7. The angular distribution of
the source is approximately Gaussian, with a
standard deviation of 11 degrees [19].

Comparison of Figure 7 to Figure 4b demon-
strates that the divergence of the fiber light has
little effect on the light distribution in highly
scattering tissue. There is additional radial
broadening and reduced penetration, but the dif-
ferences are not significant (the maximum differ-
ence is 0.08 W/cm?). The distributions are even
more similar for the case of a fiber in contact with
the tissue, as index matching decreases the nu-
merical aperture of the fiber.

DISCUSSION

Since the Monte Carlo program does not ap-
proximate the angular distribution of the light or
the scattering function, light transport can be cal-
culated with any required accuracy, even near
sources and boundaries. (Elsewhere will be pub-
lished a demonstration of the accuracy of the
Monte Carlo method in predicting measured light
distributions [13, 20].) Furthermore, no restric-
tions are placed on the geometry of tissue and
incident beam. Inhomogeneities such as blood
vessels imbedded in tissue and the layered struc-
ture of skin can be included in a straightforward
manner. One can simulate any laser beam profile
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Fig. 7. Distribution of 476 nm light in human aorta for an
optical fiber with NA = 0.26 and a diameter of 200 pm. The
source is 1 W/em?, 0.31 mW. Compare this distribution for a
divergent beam to the distribution induced by a collimated
beam as in Figure 4a.

and the dispersion of the light from any fiber tip,
either positioned inside the tissue or outside.

Monte Carlo calculations take too long to be
used for immediate calculations during an exper-
iment or treatment. However, the results of the
calculations for a range of optical parameters can
be stored for quick recall during procedures.

By comparing light distributions calculated
with approximations to the transport equation
(e.g., the diffusion equation) with the results of
the Monte Carlo calculations, the former methods
can be tested, and their systematic errors can be
specified. Thus, light propagation models can be
tested for their ability to obtain the tissue optical
properties [e.g. 7] and to predict light distribu-
tions.

The results presented demonstrate that the
internal light dose strongly depends on the diam-
eter and the profile of the incident beam. Broad
beams, for example surface irradiation during
photodynamic therapy with conventional light
sources or expanded laser beams, are well de-
scribed by the one-dimensional solution (the cen-
tral cylinder in Fig. 4c). However, narrow laser
beam and optical fiber delivery require consider-
ation of the beam diameter dependence of the in-
ternal light dose.
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